
Constructing discriminative biorthogonal bases for
classification

Wit Jakuczun

Warsaw University of Technology

October 21, 2004

Abstract We present a method for constructing discriminative biorthogonal
bases for classification. In the proposed method we use idea of the lifting scheme
a method for constructing biorthogonal wavelets and Support Vector Machines
used for building classifiers. Combining those two ideas resulted in the construc-
tion of classifiers which are based on information selected form the available
data and still yield very good classification accuracies. We have shown that
our method can be treated as a simple feature extractor for other classification
algorithms or as a method that produces a set of classifiers whose outputs may
be combined to give final classification.
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1 Introduction

Many classification algorithms such as artificial neural networks induce classi-
fiers which have good accuracy but do not give an insight into the real process
which is hidden behind the problem. Although predictions are made with high
precision such classifiers do not answer the question “Why?”. Even such algo-
rithms as decision trees or rule inducers very often produce enormous classifiers
analysis of which is almost intractable by the human mind. It is even worse when
those algorithms are used for problems of signal classification such as EEG. Very
often, for biologists, good accuracy without an explanation of the classification
process is useless. They need both accuracy and comprehensibility.
In this article we describe an approach which can help in building classifiers

which are very accurate and comprehensible simultaneously. This method is
based on the idea of the lifting scheme developed byWim Sweldens [Sweldens(1998)].
The Lifting scheme is used for constructing biorthogonal wavelet bases using
only spatial domain in contrast to the classical approach in which the frequency
domain is used. As original lifting scheme did not give us enough freedom in in-
corporating adaptation we used a modified version called updade-first proposed
in [Claypoole et al.(1998)Claypoole, Baraniuk, and Nowak].
Assume we act in space R

n. The Lifting scheme is a method in which given
vector x ∈ R

n is expanded in a biorthogonal wavelet base

x =

n
∑

i=1

αiφi

where αi =
〈

φ̃i, x
〉

. Vectors {φi}
n
i=1 and {φ̃i}

n
i=1 are biorthogonal in the sense
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that
〈

φi, φ̃j

〉

= δij

where δij = 1 if i = j and 0 otherwise. A very important feature of vectors

{φ̃i}
n
i=1 is that they are nonzero only for few indices. It implies that for calcu-

lating
〈

φ̃i, x
〉

only part of the vector x is needed. This feature is called locality.

The aim of method presented in this article is to find a biorthogonal base

{(φi, φ̃i)}
n
i=1 in which the base coefficients αi =

〈

φ̃i, x
〉

are as discriminative as

possible for classified signals. More specifically we assume that a training set
X = {(xi, yi) : xi ∈ R

n, yi ∈ {−1,+1}}
m
i=1 is given. For each base vector φ̃j we

get a vector of coefficients αj ∈ R
m

αj(k) =
〈

φ̃j , xk

〉

For each such vector we can find a number bj ∈ R called bias for which

sgn(αj(k) + bj) = yk

for as many as possible indices k ∈ {1, . . . ,m}.
For constructing bases we used the idea of Support Vector Machines (SVM)

developed by Vladimir Vapnik [Vapnik(1998)]. SVM proved to be one of the
best classifier inducers. Combining the power of SVM and the locality feature of
the designed base we were able to build classifiers with very good classification
accuracy which are also easily interpreted. We presents only experiments based
on artificial datasets. They allowed us to verify the usefulness of our method
for classification problems.

2 Method Description

This section is divided into three subsections. In the first subsection we will
shortly describe the modification of the lifting scheme [Sweldens(1998)] called
update-first [Claypoole et al.(1998)Claypoole, Baraniuk, and Nowak]. In the sec-
ond we will discuss linear predictors. In the third section linear predictors will
be generalised into nonlinear predictors. The generalisation will be based on
the idea of Support Vector Machines (SVM) by [Vapnik(1998)].

2.1 Update-first modification of lifting scheme

Here we will describe a modification of the lifting scheme. This modification,
called update-first lifting scheme allowed us to exploit the idea of SVM for
designing adaptive biorthogonal bases in R

n. For simplicity we assume that
n = 2s for some s ∈ N

1. The method consists of three main steps

• Split In this step we divide signal x into two disjoint parts xe (even
indexed samples) and xo (odd indexed) samples):

xe(k) = x(2k) k = 0, 1, . . . , n/2− 1

xo(k) = x(2k + 1) k = 0, 1, . . . , n/2− 1

1This assumption is not necessary but it makes analysis much easier.
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• Update From even and odd indexed samples we create a coarse approxi-
mation c of original signal x:

c(k) = (xe(k) + xo(k))/2 k = 0, 1, . . . ,
n

2
− 1

The vector c is half the length of the vector x.

• Predict Using c and xo we create vector d of wavelet coefficients:

d(k) = xo(k)− P k(c, Lk) k = 0, . . . ,
n

2
− 1

where P k(c, Lk) is a prediction operator, Lk ∈ N. This operator can be
any function which uses Lk indices of vector c. Quantities d(k) are called
wavelet coefficients. As with vector c, d is also half the length of the
original vector x. Mostly Lk is much less than n

2 (which is the length of
the vector c) so each wavelet coefficient depends only on small part of the
original signal. This feature is called locality.

By iterating these three steps using output c as an input for the next iteration
we get a complete set of coefficients corresponding to some biorthogonal base
in R

n. It is worth noting that this procedure can be inverted very easily by
reversing the three steps. Moreover all computations can be done in place.

2.2 Predictors based on inner products

One of the most natural forms of the operators P k(c, Lk) is an inner product.

P k(c, Lk) =
〈

c̃, pk
〉

where pk ∈ R
Lk

is a coefficients vector and c̃ consists of Lk samples from c.
In our method we use the following algorithm for choosing c̃2. If k and Lk

(k = 0, 1, . . . , n2 − 1) fulfills

• 0 ≤ k < Lk

2 − 1 then we select c̃ = [c(0), . . . , c(L
k − 1)]

• Lk

2 − 1 ≤ k < n
2 −

Lk

2 then we select c̃ = [c(k − Lk

2 − 1), . . . , c(k +
Lk

2 )]

• n
2 −

Lk

2 ≤ k < n
2 then we select c̃ = [c(

n
2 − Lk), . . . , c(n2 − 1)]

Now d(k) is given by the following formula

d(k) = xo(k)− P k(c, Lk) = xo(k)−
〈

c̃, pk
〉

2.3 Nonlinear biorthogonal bases for classification

Suppose we are given the training data X = {(xi, yi)}i=1,...,l, yi ∈ {−1, 1}, xi ∈
R
n generated independently at random according to some fixed but unknown
distribution D over R

n × {−1, 1}. The problem of classification is to learn
mapping x → y for any pair (x, y) generated by D using only given training
data X. On of the methods for solving the classfication problem is the method

2We are assuming that Lk is even
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of finding a maximal margin hyperplane [Vapnik(1998)]. This method require
the solution of the following optimisation problem:

min
w,b,ψ

1

2
‖w‖22 + C

l
∑

i=1

ξi

subject to constraints

yi(
〈

xi, w
〉

+ b) ≥ 1− ξi

ξi ≥ 0

∀i = 1, . . . , l

where w ∈ R
n, b ∈ R, C ∈ R and C > 0.

Let us return to the prediction operators described above. For each such
operator P k we build a new training data X̃k = {(c̃ki , y

i)}i=1,...,l where c̃
k
i is

created from xi as described previously (c̃ik ∈ R
Lk

). Now we can find coefficients
pk solving following optimisation problem:

min
pk,bk,Ck

1

2
‖pk‖22 + Ck

l
∑

i=1

ξi

subject to the constraints

yi(xio(k) +
〈

c̃ik, p
k
〉

+ bk)− 1 ≥ 0

ξi ≥ 0

∀i = 1, . . . , l

where pk ∈ R
Lk

, bk ∈ R, Ck ∈ R and Ck > 03.
It can be shown [Vapnik(1998)] that the optimal coefficients pk are given by

the following formula

pk =
∑

i∈ISV

αiyic̃ik

where ISV is subset of coefficients 1 ≤ i ≤ l for which αi > 0. Vectors c̃
i
k for

i ∈ ISV are called support vectors.
Now coefficients di(k) can be calculated as follows

di(k) = xio(k) +
∑

j∈ISV

yjαj
〈

c̃jk, c̃
i
k

〉

It is easily seen that coefficients di(k) are either smaller or bigger than bias bk

depending on yi and that we do not need to calculate p
k directly.

As in SVM method we can use kernel functions for calculating inner prod-
ucts. That would give us following formula for di(k)

di(k) = xio(k) +
∑

j∈ISV

yjαjK(c̃jk, c̃
i
k)

The advantage of using kernels is that we can find hyperplanes in highly dimen-
sional spaces.
The most frequently used kernels are

3Although it is possible to choose a unique parameters Lk, Ck and σ for each P k we
decided to use global values of those parameters in our experiments.
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• Polynomial: K(v, w) = (〈v, w〉+ 1)d, d ∈ N

• Radial Basis Function (RBF): K(v, w) = exp(−σ‖v − w‖2), σ ∈ R, σ > 0

• Sigmoid: K(v, w) = tanh(κ 〈v, w〉 − δ), κ, δ ∈ R

In our experiments we use RBF kernel function.

3 Building classifiers using nonlinear biorthog-

onal bases

In this section we will describe two possible applications of the proposed method.
In the first subsection we will show that the method can be treated as a local
feature extractor for classifiers such as decision trees. In the second subsection
we will present a method of constructing classification based on voting schemes.
Assume that we are given a training set

X = {(xi, yi)}
m
i=1

where xi ∈ R
n and yi ∈ {−1,+1}.

One can think of the proposed method in one of two ways: (local) feature
extractor as in [Saito(1994)] or finite set of classifiers.

3.1 Local feature extractors

By a local feature extractor we will understand any feature extractor, that is a
mapping

Φ : Rn → R
m

where mainly m << n. They are called local because we are looking for such
a mapping Φ that uses only a part of each example xi ∈ X. The proposed
predictors are such local mappings. To be more precise, after applying our
method we can use any method for selecting coefficients. In our experiments we
used well known decision-tree induction algorithm called C4.54.

3.2 Combining classifiers by voting

As was mentioned above, we can treat results of the proposed method in a
different way. To understand this approach we need to realize that we can
classify our examples using each coefficient d(k) by applying this simple rule

class(xi, d(k), b
k) = sgn(d(k) + bk)

where sgn(x) = +1 for x ≥ 0 and −1 for x < 0. We used the following algorithm

• To each training example xi ∈ X assign weight wi =
1
m
.

• Find coefficient d(k) with the highest possible accuracy and biggest pos-
sible margin, where the margin is defined by the following expression

margin(d(k), X) =

m
∑

i=1

yiwiclass(xi, d(k), b
k)

4We used Weka [Ian H. Witten(1999)] implementation of C4.5
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• For the coefficient d(k) set weight equal to

αk = log((1− εk)/εk)

where ε = |{(xi,yi)∈X : class(xi,d(k),b
k)6=yi}|

|X| is called classification error.

• Adjust examples’ weights according to the following rule

wi → wi exp(−yiclass(xi, d(k), b
k))

• Repeat until εk >
1
2 or the number of selected coefficients is sufficient.

• Combine the output of selected coefficients by voting scheme

class(xi) = sgn

(

L
∑

i=1

αiclass(xi, d(ki), b
ki)

)

A careful reader will notice that this algorithm is a duplicate of the AdaBoost
algorithm [Freund and Schapire(1995)]. In fact there is a slight difference since
we are choosing from a given set of already build classifiers and in AdaBoost
each classifier is build on a reweighted training set.

3.3 Multiclass classification problems

Our method was developed for twoclass classification problems but there are
many problems for which number of decision classes is greater than 2. For such
problems we acted in the following manner

• Let C be the number of decision classes and set X = {(xi, yi) : yi ∈
1, . . . , C}mi=1 be a given training set

• For each pair (i, j) such that i 6= j and i, j ∈ 1, . . . , C we build a classifier
Ψ(i,j) which separates classes i and j. As Ψ(i,j) ≡ Ψ(j,i) then we need to

build
(

C
2

)

classifiers.

• To classify a new example x we use the following formula

class(x) = arg maxi=1,...,C |{Ψ(i,j)(x) = i : j 6= i, j ∈ {1, . . . , C}}|

4 Results of experiments

We tested our method on five synthetic datasets. In all experiments we used
RBF kernels. Parameters C and σ were chosen by applying MCCV-10 (Monte
Carlo version of CV-10). Presented results are obtained on a separate test set.
The first three datasets were taken from Breiman [Breiman(1998)]. They

are called: twonorm, threenorm and ringnorm. They are 32-dimension, 2-class
datasets.
Next two datasets were taken from Saito [Saito(1994)]. They are called:

waveform and shape (also known as Cylinder, Bell and Funel (CBF)). Waveform
is 32-dimension, 3-class dataset and Shape is 128-dimension, 3-class dataset.
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4.1 Local feature extractors

In this experiment we wanted to check whether coefficients produced by our
method may lead to better classification accuracy than the original coefficients
for decision-tree classifiers. As an exemplary classifier we used a well known
algorithm called C4.5 taken from Weka package [Ian H. Witten(1999)].

Dataset Misclassification ratio Tree size

Original New Original New

Twonorm 0.215 0.015 35 3
Ringnorm 0.150 0.048 23 13
Threenorm 0.302 0.216 51 29
Waveform 0.290 0.183 - -

Shape 0.088 0.062 - -

Table 1: Effect of feature extraction for C4.5. Numbers are misclassification
ratios.

The results presented in Table 1 show that using our method as a feature
extractor leads to a significant improvement of classifiers accuracy with simul-
taneous size reduction.

4.2 Voting

Unfortunately coefficients chosen by C4.5 were not always the best possible.
That led us to the idea of combining the output of a few best coefficients. It
turned out that combining a few coefficients, which separately gave almost per-
fect accuracy on the training set, resulted in an increase of accuracy on the test
set. The results presented in Table 2 are much better than the results in

Dataset Misclassification ratio

3 coefficients 15 coefficients

Twonorm 0.007 0.007
Ringnorm 0.070 0.047
Threenorm 0.170 0.187
Waveform 0.211 0.178

Shape 0.025 0.018

Table 2: Misclassification ratios for voting scheme. We were combining 3 and
15 coefficients.

Table 1. The explanation of this accuracy increase is very simple. In the pre-
vious experiment we noted that trees built by C4.5 using coefficients produced
by our method very often had only one node. It means that decisions made by
those trees were based on only one coefficient. Moreover, such algorithms as
C4.5 stop searching when the first coefficient which fulfils the searching crite-
ria. In proposed voting scheme, we search for coefficients with a wide margin
which correctly classify previously misclassified examples. We believe that vot-
ing makes classification more stable and robust. From our experiment we can
also see that combining more classifiers does not always lead to better classifica-
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tion accuracy. It is quite optimistic as combining smaller number of coefficients
results in more comprehensible classifier.

4.3 Conclusions and future work

Presented method gave very optimistic results on artificial datasets. The mis-
classification ratios were small and obtained classifiers were very simple. The
proposed voting scheme gave very good results even for small number of coeffi-
cients. In future we plan to experiment with real datasets and other methods
of combining classifiers such as stacking [Wolpert(1990)] or rough mereology
[Polkowski and Skowron(1996)].

References

[Breiman(1998)] L. Breiman. Arcing classifiers, 1998. URL http://citeseer.

ist.psu.edu/breiman98arcing.html.

[Claypoole et al.(1998)Claypoole, Baraniuk, and Nowak] R. Claypoole,
R. Baraniuk, and R. Nowak. Adaptive wavelet transforms via lifting,
1998. URL http://citeseer.ist.psu.edu/claypoole98adaptive.html.

[Freund and Schapire(1995)] Yoav Freund and Robert E. Schapire. A
decision-theoretic generalization of on-line learning and an application
to boosting. In European Conference on Computational Learning The-
ory, pages 23–37, 1995. URL http://citeseer.ist.psu.edu/article/

freund95decisiontheoretic.html.

[Ian H. Witten(1999)] Eibe Frank Ian H. Witten. Data Mining: Practical Ma-
chine Learning Tools and Techniques with Java Implementations. Morgan
Kaufmann, 1999.

[Polkowski and Skowron(1996)] L. Polkowski and A. Skowron. Rough mere-
ology: A new paradigm for approximate reasoning, 1996. URL http:

//citeseer.ist.psu.edu/polkowski96rough.html.

[Saito(1994)] Naoki Saito. Local Feature Extraction and Its Application Using
a Library of Bases. PhD thesis, Yale University, 1994. URL http://www.

math.ucdavis.edu/~saito/publications/saito_phd.html.

[Sweldens(1998)] Wim Sweldens. The lifting scheme: A construction of second
generation wavelets. SIAM Journal on Mathematical Analysis, 29(2):511–
546, 1998. URL http://citeseer.ist.psu.edu/sweldens98lifting.

html.

[Vapnik(1998)] Vladimir Vapnik. Statistical Learning Theory. John Wiley &
Sons, 1998.

[Wolpert(1990)] D. H. Wolpert. Stacked generalization. Technical Report LA-
UR-90-3460, Los Alamos, NM, 1990. URL http://citeseer.ist.psu.edu/
wolpert92stacked.html.

8


