
Pythonic Feedback Framework

Introduction and Manual

Bastian Venthur

mail@venthur.de

2008-01-07

This document provides an introduction to the pythonic feedback frame-
work as well as a manual and some examples how to write your own BCI
feedbacks using this framework.

Contents

1 Introduction 2
1.1 BCI Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Pythonic Feedback Framework . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Introduction to the Pythonic Feedback Framework 4
2.1 Structure of the Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Feedback Base Class . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Interaction Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Details About the Matlab-Python Translation . . . . . . . . . . . . . . . . 5
2.5 Control Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Writing Your Own Feedbacks 6
3.1 Naming Convention for the Module- and Class Name . . . . . . . . . . . . 7
3.2 Subclassing the Feedback Class . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Reacting on Play, Pause and Stop/Writing a Threaded Main Loop . . . . 8
3.4 Working With Data Sent by Control- and Interaction Signals . . . . . . . 10
3.5 Reacting on Control- and Interaction Events . . . . . . . . . . . . . . . . . 11
3.6 Sending Markers to the Parallel Port . . . . . . . . . . . . . . . . . . . . . 12
3.7 Using the Framework's Logging Facility . . . . . . . . . . . . . . . . . . . 12
3.8 FeedbackCursorArrow � a Complete Example . . . . . . . . . . . . . . . . 13

4 Notes 13
4.1 Packages the Framework Depends on . . . . . . . . . . . . . . . . . . . . . 13

1

mailto:mail@venthur.de


4.2 Using Threads in Your Feedback . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Pygame and Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Pygame and Threads II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Polling Pygame's Event Queue . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Good Coding Style Regarding the Interaction Signal . . . . . . . . . . . . 16
4.7 Using the Parallel Port Under Linux . . . . . . . . . . . . . . . . . . . . . 16

References 16

1 Introduction

This document provides an introduction to the pythonic feedback framework as well as a
manual and some examples how to write your own BCI feedbacks using this framework.
It is not meant to be an introduction into Python. If you're new to Python but already
have programming experience with an other language, [8] gives a very good starting point
to learn Python. The documentation (especially the Library Reference) available on [7]
is essential when programming with Python.
If you don't have any programming experience, you should read [6].

1.1 BCI Setup

Figure 1 shows the setup of a BCI experiment. The subject is sitting in front of a monitor
(if the feedback is of visual nature) and is wearing a EEG cap, collecting brain signals
and submitting them to the data acquisition and signal processing units. The signal is
processed and translated into Matlab code and sent to the feedback, where, depending on
the feedback application, the feedback reacts on some way on the subject's EEG signals.
The processed and translated EEG signal which is sent to the feedback, is called control
signal.
The experimenter has the option to control certain variables of the feedback via the

GUI which also sends singals to the feedback. Those signals are called interaction signals.
Currently everything is written in Matlab. Since many feedbacks are of a very graphic

nature, may need to provide audible output and Matlab wasn't really designed for tasks
like this, the BCI group wants to move away from Matlab towards Python when writing
such feedbacks.

1.2 Pythonic Feedback Framework

The pythonic feedback framework tries to solve this task. It provides the Feedback
Controller which acts like a server and collects the control- and interaction signals. It
also features a plugin system which makes it fairly easy to write new feedbacks in Python.
Figure 2 shows the Feedback Controller in the BCI setup.
The Feedback Controller transparently (no changes in the BCI setup are necessary)

replaces the single feedback from the old setup and allows dynamic loading and un-loading
of feedbacks through it's plugin system.

2



Figure 1: Setup of an BCI experiment

Figure 2: Setup of an BCI experiment with the Feedback Framework

3



2 Introduction to the Pythonic Feedback Framework

2.1 Structure of the Framework

The basic idea behind the Feedback framework is to have a Server sitting in the back-
ground collecting control- and interaction signals, translating them into Python datatypes
and sending them to the currently active feedback. The server is called Feedback Con-
troller. Once started, it is fully controllable via interaction signals. You can remotely
load feedbacks, start, stop and pause them via the GUI.
When receiving control signals the Feedback Controller translates the data into Python

and passes the data to the currently loaded feedback.
The Feedback Controller supports a plugin system which makes it very easy to create

new feedbacks. Basicly all you have to do to create a new feedback is to subclass the
Feedback base class and implement the functions as needed or create your own ones.

2.2 The Feedback Base Class

The Feedback base class is the interface to the Feedback Controller's plug-in system. By
subclassing the Feedback class and putting it somewhere into the Feedbacks directory
your feedback is already a valid and ready-to-use (although quite useless at this moment)
feedback, available to the Feedback Controller.
The mode of operation of the feedbacks is event driven. Whenever the Feedback

Controller receives a signal, it translates and analyzes it and calls the appropriate method
of the feedback to notify it. When writing your own feedback, all you have to do is to
implement some or all methods of the Feedback base class to react on those signals as
needed.
The following methods are supported by the Feedback base class:

on_init(self) This method is called by the Feedback Controller after the feedback has
been successfully loaded. Since the initialization of the feedback is triggered by an
interaction signal, on_interaction_event is called right after on_init returned.

on_interaction_event(self, data) This method is called when the Feedback Controller
received an interaction signal. data contains all the variables sent by the GUI. You
don't have to use the data from here directly, see section 2.3 for details.

on_control_event(self, data) This method is called by the Feedback Controller after
the Feedback Controller received a control signal. data contains the tuple contain-
ing the processed and translated EEG data. You don't have to use this variable,
see section 2.5 for details.

on_play(self) If the Feedback Controller detects the Play command in an interaction
signal, it calls this method just before it calls on_interaction_event.

on_pause(self) If the Feedback Controller detects the Pause command in an interaction
signal, it calls this method just before it calls on_interaction_event.

4



on_quit(self) If the Feedback Controller detects the Stop command in an interaction
signal, it calls this method just before it calls on_interaction_event.

send_parallel(self, data) This is the only method of the Feedback base class which
actually provides functionality. You should not overwrite this method if you don't
want to replace the underlying code. Use this method to send a byte to the parallel
port of the machine running the feedback.

on_play, on_pause and on_quit are a convenient methods which are always called before
on_interaction_event. You don't have to use them but then you will almost certainly
have to inspect every interaction signal to check whether it contains the Start, Pause or
Stop trigger if you want to react on them.

2.3 Interaction Signals

Everytime the Feedback Controller receives a valid interaction signal from the GUI,
it translates it and calls the on_interaction_event method of the currently running
feedback. We can distinguish between �ve di�erent types of interaction signals:

Send With this signal the GUI sends various variable-value pairs to the feedback.

Send+Init Like the Send signal plus the command to initialize the feedback.

Start This signal tells the feedback to start its main routine (e.g. the trials).

Pause Tells the feedback to pause the run.

Stop Tells the feedback to quit.

If the Feedback Controller recognizes a generic interaction signal (Send) it just calls
on_interaction_event of the feedback. If it additionally recognizes an Init, Start, Pause
or Stop command in the signal, it also calls the appropriate on_-method of the feedback.
In case of Init, it calls on_init before on_interaction_event, in every other case after.
Table 1 shows the ordering of the method calls of the feedback triggered by the di�erent
interaction signals.
The Feedback controller also analyzes the data in the interaction signal, extracts the

variables and it's values and puts them into the currently running feedback. See 3.4 for
details.

2.4 Details About the Matlab-Python Translation

The unpacked control- and interaction signal is in fact code which is directly interpretable
by Matlab. The control signal contains just a tuple of numbers representing the processed
EEG signal, the interaction signal contains Matlab variable-assignments. Since the Mat-
lab syntax and it's data types are not Python compatible, it is necessary to translate the
variable names and Matlab's datatypes into Python.

5



GUI sends Feedback receives

Send on_interaction_event(self, data)

Send+Init on_quit(self) (old feedback)
on_init(self)

on_interaction_event(self, data)

Start on_interaction_event(self, data)

on_play(self)

Pause on_interaction_event(self, data)

on_pause(self)

Stop on_interaction_event(self, data)

on_quit(self)

Table 1: Overview of the method calls triggered by the di�erent types of interaction
signals.

Translation of Variablenames The translation of Matlab's variable names is straight-
forward. The only important aspect is that if the Feedback Controller detects dots in the
variable names it truncates the name after the last dot and takes the result as variable
name.
If for example the Feedback Controller receives a variable feedback_opt(1).type, the

resulting variable name in the feedback will be _type (note the underscore pre�x, see
section 3.4 for details). If the Feedback Controller receives a variable name without a
dot, the whole name will be taken on if possible.

Translation of Datatypes Matlab supports many data types which have no equivalent
in Python while it also shares a subset of types which have a equivalent in Python.
Fortunately the Feedback Controller does not have to support all available types available
in Matlab (although it would be possible). Only the most common ones like strings,
integers, �oats and lists are needed to communicate with the feedbacks. All of them
are currently recognized. If the Feedback Controller receives an unknown type it will
print out a warning and move on. If needed the Feedback Controller can be enhanced to
recognize more types. The relevant method is __parse_type of the UdpDecoder class.

2.5 Control Signals

Whenever the Feedback controller receives a control signal, it translates it, extracts the
data (a tuple containing a few numbers), puts it in the currently running feedback (see
3.4 for details) and calls the feedback's on_control_event(self, data) method.

3 Writing Your Own Feedbacks

The Feedbacks/Tutorial directory contains a few example feedbacks which will hopefully
help you to understand how to develop your own ones. This section will explain them.

6



3.1 Naming Convention for the Module- and Class Name

In order to make your Feedback available to the Feedback Controller's plugin system,
your feedback has to follow a certain naming convention. The rules are:

1. The feedback has to be located somewhere in the Feedbacks directory. It is possible
to place it in an arbitrary deep subdirectory inside of the Feedbacks directory.
There are no restrictions on the subdirectories names as long as they represent
valid Python packages.

2. The feedback's class name must match it's module name. If the class name of your
feedback is FooBar then it has to be written in the �le FooBar.py.

When the experimenter wants to load a certain feedback, he sends a Send+Init signal
which contains at least the assignment of the type variable. The variable holds a string
which is interpreted in the following way:

• If the string contains no dots (the "." character), the string is interpreted as the
module and class name of the feedback.

• If the string contains one or more dots, the string is split up and the last element
represents the module/class name and the element(s) before the last element the
package name.

Examples:

• If the Send+Init signal contains type = Foo.baR.Baz, the Feedback controller tries
to load the Class Baz in the module Baz (the �le Baz.py) in the Directory Feedbacks/Foo/baR.

• If the Send+Init signal just contains type = MyFeedback, the Feedback Controller
searches for the class MyFeedback in the module MyFeedback located directly in the
Feedbacks directory.

3.2 Subclassing the Feedback Class

Following the naming conventions of section 3.1 ensures that the Feedback Controller
�nds the plugin. In order to make it working properly as a valid plugin of the Feedback
Controller, the feedback has to be a subclass of the Feedback base class.
Listing 1 shows a fully working Feedback without any functionality other than printing

the feedback has been successfully loaded and quit. The lines 1-3 are the important ones
in this lesson: You have to import the Feedback class from the Feedback package and
subclass your Feedback (Lesson01 in this case) from it. You don't have to override the
on_init and on_quit methods to make the feedback working if you would replace the
lines 5-9 with a simple pass statement, the feedback would still be perfectly running
without any functionality.

7



Listing 1: Trivial Feedback

1 from Feedback import Feedback

2

3 class Lesson01(Feedback ):

4

5 def on_init(self):

6 print "Feedback successfully loaded."

7

8 def on_quit(self):

9 print "Feedback quit."

Overwriting Feedback.__init__ Since the __init__ method of the Feedback base class
is already implemented (it sets up the feedbacks logger and opens the parallel port), you
should not overwrite it blindly. If you want to overwrite it, make sure to call the base
class' __init__ method before anything else in this method. Listing 2 shows an example.
The second parameter is a handle to the parallel port, the third parameter of the __init__
method changes the pre�x the feedback uses for variables which are automaticly set and
updated by the feedback controller (see 3.4 for details). The parameter is optional and
defaults to the underscore character if omitted.

Listing 2: Trivial Feedback with __init__ overwritten

1 from Feedback import Feedback

2

3 class Lesson01b(Feedback ):

4

5 def __init__(self , pp):

6 Feedback.__init__(self , pp , "foo -")

7 # Your own stuff goes here

8

9 def on_init(self):

10 print "Feedback successfully loaded."

11

12 def on_quit(self):

13 print "Feedback quit."

Since Feedback's on_init is guaranteed to be the next method called after __init__

it should not be necessary to overwrite __init__ in most cases. You should use on_init

instead.

3.3 Reacting on Play, Pause and Stop/Writing a Threaded Main Loop

Listing 3 shows a very simple feedback which is already able to react on Play, Pause and
Stop interaction signals. It starts it's main loop in a new thread which does nothing
more than incrementing a number and sleeping for a half second. Although very simple,
this example already contains many important aspects of real life feedbacks.

8



on_play runs in a di�erent thread It is very important to know that on_play runs in
a di�erent thread than all the other Feedback methods. This is important since in most
cases the on_play method will execute for a potentially long time (like several minutes).
In order to allow the Feedback Controller to call other methods of the Feedbacks in the
meantime, it is necessary to let this method run in a di�erent thread than the other ones.

How to make sure on_quit only returns when the main loop is �nished? Since the
main loop of the feedback will run in a di�erent thread than the rest of the Feedback's
methods, you have to make sure that the on_quit method does not return until the other
thread is killed. In order to achieve that you should set a variable (in this example
quitting) which will cause the main loop to exit and wait until another variable (quit)
has been set by the main loop when it exited. This can be done by a simple loop which
does nothing until the quit variable has been set by the main loop (busy waiting).

Listing 3: A more realistic example.

1 # Lesson02

2 # - Starting a main loop in a thread when the feedback gets the start signal

3 # - Pausing and unpausing it

4 # - Quitting the main loop

5

6 from Feedback import Feedback

7

8 import time

9

10 class Lesson02(Feedback ):

11

12 def on_init(self):

13 print "Feedback successfully loaded."

14 self.quitting , self.quit = False , False

15 self.pause = False

16

17 def on_quit(self):

18 self.quitting = True

19 # Make sure we don't return on_quit until the main_loop (which runs in

20 # a different thread !) quit.

21 print "Waiting for main loop to quit."

22 while not self.quit:

23 pass

24 # Now the main loop quit and we can safely return

25

26 def on_play(self):

27 # Start the main loop. Note that on_play runs in a different thread than

28 # all the other Feedback methods , and so does the main loop.

29 self.quitting , self.quit = False , False

30 self.main_loop ()

31

32 def on_pause(self):

33 self.pause = not self.pause

9



34

35 def main_loop(self):

36 i = 0

37 while 1:

38 time.sleep (0.5)

39 if self.pause:

40 print "Feedback Paused."

41 continue

42 elif self.quitting:

43 print "Leaving main loop."

44 break

45 i = i+1

46 print "Iteration Number %i" % i

47

48 print "Left main loop."

49 self.quit = True

3.4 Working With Data Sent by Control- and Interaction Signals

The Feedback Controller provides a very convenient way to access the data sent by the
control- and interaction signals. Listing 4 shows a snippet of Lesson03, which is a variant
of Lesson02 as shown in Listing 3 with a modi�ed main loop. The listing demonstrates
how to access the data sent by the control- and interaction signal.

Control Signal The data sent by the control signal is stored automaticly in the _data

variable of your feedback. Everytime the Feedback Controller receives a control signal it
overwrites the _data variable with the new value.

Interaction Signal The variable assignments sent via the interaction signal are trans-
lated into Python and also stored as variables in your feedback. If the interaction signal
contains foo='some string',bar=123,baz=74.11 then your feedback automaticly pro-
vides the variables _foo, _bar and _baz with the corresponding values.

Listing 4: Accessing control- and interaction data.

1 def main_loop(self):

2 i = 0

3 while 1:

4 time.sleep (0.5)

5 if self.pause:

6 print "Feedback Paused."

7 continue

8 elif self.quitting:

9 print "Leaving main loop."

10 break

11 print self._data

12 print self._type

13

10



14 print "Left main loop."

15 self.quit = True

The escape character In order to avoid pollution of the namespace of your feedback,
all the variables which are created and updated automaticly by the Feedback Controller
are pre�xed. By default the pre�x is a single underscore character ("_"), you can change
the pre�x by calling the Feedback.__init__(self, prefix="_") method. As you can see
the pre�x parameter is optional an by default the undersore. Listing 2 shows a variant
where the pre�x is foo-. In that case the variables in the above examples would be
foo-data, foo-foo, foo-bar and foo-baz.

3.5 Reacting on Control- and Interaction Events

Since the Feedback Controller already stores the data sent by the interaction- and con-
trol signals in the feedback, it should not be necessary to directly react on control- or
interaction events in most cases (Please consider the hints about coding style in section
4.6). However, in some cases you might want to do something whenever the feedback
receives such a signal. In this case you have to overwrite on_interaction_event respec-
tively on_control_event. Both methods have the data variable which holds the processed
and translated contents of the signal. At the time the methods are called those data is
already present as attributes in the feedback.

Listing 5: Reacting on control- and interaction events.

1 from Feedback import Feedback

2

3 class Lesson04(Feedback ):

4

5 def on_init(self):

6 self.myVariable = None

7 self.eegTuple = None

8

9 def on_interaction_event(self , data):

10 # this one is equivalent to:

11 # self.myVariable = self._someVariable

12 self.myVariable = data.get("someVariable")

13 print self.myVariable

14

15 def on_control_event(self , data):

16 # this one is equivalent to:

17 # self.eegTuple = self._data

18 self.eegTuple = data

19 print self.eegTuple

Listing 5 shows a trivial example how to react on interaction- and control events.

11



3.6 Sending Markers to the Parallel Port

Most feedbacks need to send so called markers to the parallel port on various events. For
this task the Feedback base class provides the send_parallel(self, data, reset=True)

method, which sends the given data to the parallel port if possible.
Unlike the other methods of the Feedback base class you don't need to overwrite this

method to do something usefull. The method is already implemented in the Feedback
base class.
The send_parallel method will send the given byte to the parallel port and reset the

port again to zero after 10ms. Listing 6 shows the example feedback Lesson05.

Listing 6: Sending markers.

1 from Feedback import Feedback

2

3 class Lesson05(Feedback ):

4

5 def on_init(self):

6 self.send_parallel (0x1)

7

8 def on_play(self):

9 self.send_parallel (0x2)

10

11 def on_pause(self):

12 self.send_parallel (0x4)

13

14 def on_quit(self):

15 self.send_parallel (0x8)

Read section 4.7 if you have problems acessing the parallel port under Linux.

3.7 Using the Framework's Logging Facility

The Feedback base class already has a logger build in, available through the self.logger
variable. Listing 7 shows Lesson06, a modi�ed version of Lesson01 as shown in 1. Instead
of a simple print, this version uses the logger which can be silenced at a central point in
the Feedback Controller so you don't have to comment in and -out all the print lines as
you would do without using a logger.

Listing 7: Using the Feedback's logger.

1 from Feedback import Feedback

2

3 class Lesson06(Feedback ):

4

5 def on_init(self):

6 self.logger.debug("Feedback successfully loaded.")

7

8 def on_quit(self):

9 self.logger.debug("Feedback quit.")

12



Con�guring the Logger The framework's logging facility is con�gurable through com-
mand line parameters:

�loglevel=LOGLEVEL Controls which messages appear on the console and which are
suppressed. Possible values are in ascending order: notset, debug, info, warning,
error and critical, the default loglevel is warning. Setting the loglevel to error means
every message with a level error and higher will be printed out to the console, while
the messages with a lower level than error are suppressed.

This option controls the loglevel of the Feedbacks and the Feedback Controller. It's
use is equivalent of setting both levels (see below) separately to the same level.

�fb-loglevel=LOGLEVEL Sets the loglevel for the Feedback, default is warning.

�fc-loglevel=LOGLEVEL Sets the loglevel for the Framework, default is warning.

Note that you can assign a di�erent loglevels to the feedback and the framework. This
is very useful if you want to use lower loglevels for your feedback but are not interested
in the low level logmessages of the feedback controller.
Since the loglevel option sets both levels: for the Feedbacks and the Feedback Con-

troller, it is possible to set con�icting loglevels. If you set con�icting loglevels, the lowest
of the desired loglevels will be taken.

Example: Setting --loglevel=info --fb-loglevel=debug --fc-loglevel=warning

will set the loglevel for the Feedback Controller to info since it is the smallest of the two
con�icting values info and warning. The loglevel for the Feedbacks will be set to debug

since debug is lower than info.

3.8 FeedbackCursorArrow � a Complete Example

The above sections only discussed single aspects of writing feedbacks. There also exists
a complete example feedback called FeedbackCursorArrow. It is a complete rewrite of
the Matlab feedback Feedback_cursor_arrow. The feedback is a game where an arrow is
randomly shown pointing at one of two di�erent directions and where the subject has
to try to move a cursor to the correct direction into the target zone in a short period of
time.
The feedback is located in the Feedbacks directory and gives you an example how a

feedback written in Python, using the Framework and Pygame could look like.

4 Notes

4.1 Packages the Framework Depends on

In order to get the framework running you have to install the following packages:

Python The framework needs this package to execute. The version under which the
framework was developed is 2.4.

13



pyParallel Used by the framework to utilize the machine's parallel port. You can down-
load it from here [2] or on Debian based distributions get it by installing the package
python-parallel.

pyGame Download it from here [1], the according Debian package is called: python-
pygame

4.2 Using Threads in Your Feedback

If you for some reason have to use threads in your feedback, you should take special
care to kill them before the feedback returns it's on_quit method. Please keep in mind,
that by default the Feedbacks on_play method already runs in a di�erent thread than all
the other methods of the Feedback (and so do all the methods which are called by this
method).
Python supports two ways of using threads in your application. The �rst one comes

from the thread-module and provides very low-level primitives for working with multiple
threads [4]. The start_new_thread(function, args[, kwargs]) method provides a pain-
less way to start a method in a new thread. Unfortunately it does not return a handle
to the thread and you have no way to control it directly.
The second way is to use Python's threading module . It provides higher-level interfaces

on top of the low-level thread module [5]. Among others, it provides the Thread class
which provides important methods like start, join and isAlive. The join method
is particularly important if you want to make sure that the on_quit method of your
feedback does not return before all the threads of the feedback have quit. Listing 8
shows an example, where the on_quit method checks via isAlive if the thread is alive
and waits until the thread has quit before calling pygame.quit() and returning to the
Feedback Controller.

Listing 8: on_quit method of the CursorArrow-Feedback.

1 def on_quit(self):

2 self.quit = True

3 if self.someThread.isAlive ():

4 self.someThread.join()

5 pygame.quit()

4.3 Pygame and Threads

When writing a graphical feedback in Python using Pygame, you will almost certainly
want to use pygame.time.Clock.tick(FPS) to limit the framerate your feedback is running.
Python currently does not utilize more than one CPU and just emulates threads by
running each thread for a small amount of time sequentially. For a detailed explanation
about Python's way of handling threads and a nice introduction into threads in general
see [9].
Under some circumstances Pygame's clock.tick() implementation might use busy wait-

ing and will therefore not put the thread to sleep to share the processor with other

14



threads. Since most reasonable non-trivial feedbacks will at least use one thread for their
main loops, this could lead to a situation where the framework's network threads starve
and aren't able to provide new control- and interaction signals.
A workaround for this problem is to forcefully put the thread into sleep for a small

amount of time before limiting the framerate via Clock.tick(). So instead of the intuitive
variant in listing 9

Listing 9: Limiting the framerate the intuitive (but wrong) way.

1 self.clock.tick(self.FPS)

you should wait for a small amount of time to put the thread into the sleeping state
to share the CPU with the other threads. Listing 10 shows an example.

Listing 10: A working alternative.

1 pygame.time.wait (10)

2 self.clock.tick(self.FPS)

wait(10) will sleep the current thread for 10 milliseconds and share the processor with
other threads. Since tick() remembers the time it was called the last time, calling
wait(n) will have no negative e�ects as long as the sum of the time n and the time
needed for one loop of the main loop is not bigger than the reciprocal of the desired
framerate.

4.4 Pygame and Threads II

Another important aspect of threading with Pygame comes with a limitation of pygame:
The pygame.init() and the polling of Pygame's event queue have to take place in
Python's main thread! Otherwise on some operating systems the whole application will
not respond correctly to the operating system an might appear to be hanging.
The Feedback's on_play method already runs in Python's main thread for this very

reason. All you have to take care of is to initialize pygame and poll pygame's event queue
in this method (or in one of the methods on_play calls).

4.5 Polling Pygame's Event Queue

This important point is somewhat hidden in pygame's online documentation [3]:

"Your program must take steps to keep the event queue from over�owing.
If the program is not clearing or getting all events o� the queue at regular
intervals, it can over�ow. When the queue over�ows an exception is thrown."

This means that you must poll pygame's event queue once per frame(!) even if you
don't use the event queue.
The example FeedbackCursorArrow provides a method process_pygame_events which

can serve as an example. It polls the event queue to react on changes of the window
dimensions.

15



If you don't use pygame's event queue, you still have to poll the queue so pygame can
process the events internally, you can achieve this by calling pygame.event.pump() once
per frame

4.6 Good Coding Style Regarding the Interaction Signal

Allthough the Feedback Controller automaticly creates and updates variables in your
feedback on interaction signals, you should consider having a central point where you
connect the variable names from the interaction signal with the counterparts of your
feedbacks. For example if the GUI sends the foo variable and your feedback uses the
_foo provided by the Feedback Controller many times on di�erent places in the code.
Imagine the variable name is changed in the GUI from foo to bar, now you would have
to search all over the code and change all occurrences of _foo to _bar. This can be done
semi automaticly with the right tools but is a potentially dangerous action (imagine you
already had a variable called _foo).
A clean solution would be to utilize the on_interaction_eventmethod of your feedback

to translate the external variable names to your local ones. This way you would have
one central point where you would have to care about each variable from the interaction
signal exactly once.

4.7 Using the Parallel Port Under Linux

On our Linux systems running Debian/Etch we were not able to use the parallel port
by default. The problem was the lp kernel module which occupies the parallel port and
insu�cient user permissions to use the parallel port. The following commands in listing
11 will unload the lp kernel module and make the parallel port writable for everyone.

Listing 11: Making the parallel port available on Debian/Etch

1 user@box$ sudo modprobe -r lp

2 user@box$ sudo chmod 666 /dev/parport0

This has to be done everytime the machine on which the framework is running is rebooted.

References

[1] Homepage of pygame.
http://www.pygame.org.

[2] Homepage of pyparallel.
http://pyserial.sourceforge.net/pyparallel.html.

[3] Important note on polling pygame's event queue.
http://www.pygame.org/docs/ref/event.html.

[4] Python's documentation of the thread module.
http://www.python.org/doc/2.4.4/lib/module-thread.html.

16

http://www.pygame.org
http://pyserial.sourceforge.net/pyparallel.html
http://www.pygame.org/docs/ref/event.html
http://www.python.org/doc/2.4.4/lib/module-thread.html


[5] Python's documentation of the threading module.
http://www.python.org/doc/2.4.4/lib/module-threading.html.

[6] Python's wiki, providing tutorials for non-programmers.
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers.

[7] Various documentation available on python's website.
http://www.python.org/doc/.

[8] Mark Lutz. Python Pocket Reference, Third Edition. O'Reilly Media, Inc., 2005.

[9] Norman Matlo� and Francis Hsu. Tutorial on Threads Programming with Python.
University of California, 2003-2007.
http://heather.cs.ucdavis.edu/~matloff/Python/PyThreads.pdf.

17

http://www.python.org/doc/2.4.4/lib/module-threading.html
http://wiki.python.org/moin/BeginnersGuide/NonProgrammers
http://www.python.org/doc/
http://heather.cs.ucdavis.edu/~matloff/Python/PyThreads.pdf

	Introduction
	BCI Setup
	Pythonic Feedback Framework

	Introduction to the Pythonic Feedback Framework
	Structure of the Framework
	The Feedback Base Class
	Interaction Signals
	Details About the Matlab-Python Translation
	Control Signals

	Writing Your Own Feedbacks
	Naming Convention for the Module- and Class Name
	Subclassing the Feedback Class
	Reacting on Play, Pause and Stop/Writing a Threaded Main Loop
	Working With Data Sent by Control- and Interaction Signals
	Reacting on Control- and Interaction Events
	Sending Markers to the Parallel Port
	Using the Framework's Logging Facility
	FeedbackCursorArrow -- a Complete Example

	Notes
	Packages the Framework Depends on
	Using Threads in Your Feedback
	Pygame and Threads
	Pygame and Threads II
	Polling Pygame's Event Queue
	Good Coding Style Regarding the Interaction Signal
	Using the Parallel Port Under Linux

	References

