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Algorithm

Our statistical discriminator works with the precompu-
ted samples. It has been trained off-line with data of first
three sessions and it is structured in three stages: pre-
processing and feature extraction statistical discrimina-
tion, and online discrimination improvement.

Preprocessing and Feature Extraction

First of all, before any analysis data are transformed
by means normalizing of each PSD sample. Each spec-
tral component of channel i from sample t is normalized
dividing by the energy of PSDt(i)

PSDnmht
(i) =

PSDht
(i)∑n

h=1 PSDht(i)
(1)

being PSDht
(i) the hth power spectral component.

With data normalized, the feature extraction process is
guided by canonical variates transform [1], a generaliza-
tion of Fisher’s linear discriminant function to more than
two groups. This transformation permits the projection of
a p-dimensional dataset X to be classified into c classes
in a (c-1)-dimensional feature space where classes sep-
aration is maximized. This is achieved by finding vectors
a that maximize the quotient

γ =
a′Ba
a′Wa

(2)

where B and W are dispersion matrix between and within
classes respectively:

B =
c∑

l=1

nl(xl − x̄)(xl − x̄)′ (3)

W =
c∑

l=1

nl∑
j=1

(xlj − x̄l)(xlj − x̄l)′ (4)

being x̄ = 1
n

∑c
l=1 nlx̄l. Consequently, vectors a are the

eigenvectors of W−1B with eigenvalues larger than zero.
In our case, we find the eigenvector’s matrix A(97×2) with
significant eigenvalues larger than zero from PSDnmh

matrix of samples from the first three sessions. The new
feature space Y is defined by the projection of PSDnmh

samples in A:

Y = PSDnmhA (5)

Statistical Discrimination

After normalization and canonical variates transform,
we discriminate amongst three mental tasks produced by
subjects in the fourth session with the distance based DB
discriminator [2] working with an Euclidean metric. As we
already said, we use the samples of first three sessions
as training set.
Given c subpopulations or classes C1, ..., Cc from popu-
lation Ω, accomplishing

⋃c
l=1Gl = Ω, with Cl

⋂
Cm = ∅

for l 6= m, the p-dimensional random vector y can be ex-
pressed as y =

∑c
l=1 yCl

ICl
where yCl

represents the
random vector and ICl

the Cl indicator. Defined a dis-
tance function dl for class Cl, the proximity measurement
for pattern w0 ∈ Ω with vector y0 = y(w0), is defined as

φl(y0) = Vl(yGl
|y0)− Vl(yGl

) (6)

where

Vl(yGl
|y0) = EGl

[d2
l (y0,yGl

)] (7)

Vl(yGl
) =

1
2
EGlGl

[d2
l (yGl

,yGl
)] (8)

In this way, DB discriminator assigns w0 to Cl, if

φl(y0) = minh[φh(y0)] (9)

Taking a random sample y1, ..., yn of y, it is possible to
estimate geometric variability and relative geometric vari-
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ability to pattern y0

V̂d(y) =
1

2n2

n∑
i,j=1

d2(yi,yj) (10)

V̂d(y|y0) =
1
n

n∑
i=1

d2(y0,yi) (11)

obtaining as a proximity function estimation

φ̂(y0) =
1
n

n∑
i=1

d2(y0,yi)−
1

2n2

n∑
i,j=1

d2(yi,yj). (12)

Then, the DB discriminator, which is trained by a sample
of n patterns of Ω originating from c classes C1, ..., Cc

where nl patterns are included in Cl class, operates by
assigning w0 to Cl if

φl(y0) = minh[φ̂h(y0)] (13)

being

φ̂l(y0) =
1

nl

nl∑
j=1

d2(y0,ylj)−
1

2n2

nl∑
j,j′=1

d2(ylj ,ylj′).(14)

In our case, the final assignment of a projected sample yt

incoming from fourth session to Cl is produced if

ψl(yt) = minh[ψh(yt)] (15)

where

ψl(yt) =
1
Nav

Nav∑
i=1

ψl(yt−i+1) (16)

is an average proximity over the preceeding Nav = 8 con-

secutive samples, and ψl(yt) = φ̂l(yt
)∑c

l=1
φ̂l(yt

)
is the relative

proximity to Cl at time t.

Online Discrimination Improvement

One of the biggest problems of the statistical discrimi-
nation task comes from the subject inconsistency in men-
tal tasks production process, resulting in mislabeled sam-
ples by human or automatic operator which makes more
difficult posterior class assignations. In this context, there
is a need to explore some controller process that over-
comes this limitation and permits to maintain an accept-
able classification accuracy level. With this in mind, we
have designed a parallel discriminant process guided by
a mental task transition detector.
For each new incoming sample, after normalization and
canonical variates projection, the algorithm works as fol-
lows:

1. Calculate an index to detect transition. It is easy to
detect a mental task transition at time t with the index

I(PSDnmht
) = Φ(PSDnmht−1 ,PSDnmht

) (17)

−Φ(PSDnmht−2 ,PSDnmht−1)

if |I(PSDnmht−1), I(PSDnmht)| > θ, where θ is a
fixed threshold and Φ(·) a proximity function.

2. Classify with DB discriminator.

3. If |I(PSDnmht−1), I(PSDnmht)| > θ, calculate class
proportions p(Cl) given by DB discriminator in the
gap limited by two last transitions or by first sample
and first transition. Else, do nothing.

4. If maxh[p(Ch)] > ξ, being ξ a fixed threshold, until
next transition remove from training samples those
labeled as maxh[p(Ch)] and reclassify once again
with DB discriminator into resting classes. Else, do
nothing (maintain classification from step 2).

Note that this algorithm utilizes the existence of transi-
tions to discard the class that can be assumed as pre-
dominant in the anterior mental activity gap, improving
chance classification of posterior samples of our dataset
from .33 to .50. Is important to say that this benefit de-
pends on ξ. If the threshold value is too high (too restric-
tive), reclassification doesn’t work and first DB classifi-
cation is maintained, given that the anterior gap is com-
posed with a more heterogenic collection of samples we
want to assume. Contrary, if the threshold level is mini-
mum (minimum recommendable is .5), it is easy that re-
classification process works and classification accuracy
improves. We have to note that this is only true assuming
that maxh[p(Ch)] is representative of the mental task pro-
duced in the anterior gap. The label assigned by the oper-
ator or communicated by the subject may not correspond
with maxh[p(Ch)], producing a misclassification process
of next gap. To avoid this problem, overall in subjects with-
out previous experience with BCI’s and working under
operation modes without feedback, it is recommendable
to fix a conservative threshold. Meanwhile, this algorithm
seems to be useful improving classification accuracy in
situations of scarcely consistent subjects, that is subjects
that are not very consistent, case where reclassification
achieves small improvements, are sufficiently consistent
to accept the assumption that class with maxh[p(Ch)] is
representative of labeling carried out by subject or op-
erator, case where reclassification can produce a great
classification accuracy improvement.

Results and Discussion

The algorithm has been tested with sessions 2 and
3. To do this, the algorithm has been trained with the
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first session in the case being tested with the second
session, and with the two first sessions individually and
jointly in the case being tested with the third session. The
transition detector threshold has been fixed with θ = ,2,
and the probability threshold with ξ = ,55.
Table I shows the algorithm performance over the three
subjects relative to test conditions mentioned above.For
each subject the first row corresponds to performance
of the algorithm without online improvement and the
second corresponds to complete algorithm.

Table I
Performance over the three subjects relative to test condition.

Subject Test Condition
1→ 2 1→ 3 2→ 3 1 + 2→ 3

1 0,6774 0,6973 0,7287 0,7486
0,7284 0,7209 0,7564 0,7646

2 0,5194 0,5999 0,5864 0,6241
0,5958 0,6803 0,6486 0,6872

3 0,5231 0,4297 0,3869 0,4273
0,6168 0,4645 0,3910 0,4349

Average 0,5733 0,5756 0,5673 0,6000
0,6470 0,6219 0,5987 0,6289

Performance is measured in proportion of correct classifications.

For each subject and average, the first row corresponds to perfor-

mance of the algorithm without online improvement and the second

corresponds to complete algorithm.

These results show two aspects worth highlighting.
By one hand, the online improvement systematically
improve classification performance. By the other hand,
in the case of testing algorithm with third session is
convenient to join two previous sessions to train. This
action produces the best performance over the two first
subjects and similar results to the best performance
over the third subject, achieved this when only the first
session is used to train. However, despite these benefits,
results achieved over third subject remain still far from
acceptable performance.
For each subject, figures 1, 2 and 3 show in graphs
positioned in the first row labeling along the third session
(1 + 2 → 3 condition) produced by the algorithm without
online improvement, with improvement, and produced
by subjects. In the second row there are plotted the
same data projected into canonical variates space.
These figures help understanding the obtained results
and online improvement functioning. Note that original
labels (2, 3 and 7 ) have been changed into 2, 3 and 1
respectively.
First of all, we have to point out that temporal window
graphs give intrasessions info while projections into
canonical variates space give intersessions info (note
that we are projecting samples of third session into a

space constructed from two first sessions). In this sense,
it is possible to say that relative good results of the algo-
rithm over subject 1 are due to the consistent dissimilarity
of different mental task patterns produced in a session,
and the ability to maintain this in the same way along
different sessions. In this sense, it is observable in any
temporal window graph, without online improvement, that
in most of gaps where subject say to be doing a mental
task there are few samples classified in another class,
fitting subject’s labeling. By the other hand, similarity
between projections into canonical variates of samples
labeled by algorithm respect labeled by subject show
that feature extraction from two first sessions constructs
a valid space to represent and discriminate samples of
different mental activities from session 3. Otherwise,
plots of the algorithm results over subject 3 show a very
different behaviour. Firstly, this subject produces patterns
too similar for each mental task, this is clearly shown in
any temporal gap of third session where subject says to
be doing a mental task and there are a similar proportion
of samples classified into three possible classes (see
without online improvement graph). Simultaneously, this
produces that mental tasks can not be represented as
consistent patterns along different sessions. This is dra-
matically represented in canonical variates plots where
labeling carried out by subject totally mismatch with
algorithm classification, showing the inappropriateness
of canonical variates obtained from sessions 1 and 2 to
represent samples from session 3. Finally, results over
subject 2 show a middle point between the other two
subjects and this is easily viewed in figure 2.
In reference to differential functioning of online improve-
ment over the three subjects, we can give a particular
explanation for each one. Starting with subject 3, we
can say that online performance doesn’t improve perfor-
mance substantially because there are only two gaps
(specifically the first and the fifth) where maxh[p(Ch)] > ξ
(see without online improvement graph). By another way,
although subject 1 shows a little improvement too the
reason is totally different. There is only one gap where
the expression maxh[p(Ch)] > ξ is not true (eighth)
but the margin to improve is minimal due to initial good
performance, which is nearest to the maximum possible,
when being used a good representation space. Other-
wise, algorithm performance over subject 2 shows the
biggest improvement. This is caused by the existence
of several gaps where expression maxh[p(Ch)] > ξ is
true, jointly with existence of a representation space that,
being far from the appropriate, maintains a basic struc-
ture in common with samples from third session giving
a broad margin to be modified by online improvement.
In this case, we can say that this subject is a scarcely
consistent subject, the kind of subject where online
improvement has maximum performance.
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Finishing, figures 4, 5 and 6 show the same kind of
graphs as discussed above plotting data of the fourth
session whose estimated labels we have to provide to
participate in the competition. We can see that without
online improvement temporal window graphs seem
clearer than obtained in 1 + 2 → 3 condition, overall over
subjects 2 and 3. This is explained by the increase of
number of mental activity gaps where maxh[p(Ch)] > ξ
is true (fixed ξ =, 5), which is the effect of a hypothetical
subject learning process. This is especially outstanding
over subject 3, wich is the subject that after four sessions
starts showing a scarcely consistent behaviour. This is
the reason for the apparent improvement introduced
by ’online improvement’ (see with online improvement
temporal window graphs) from which we could get the
unknown subject labeling. Of course, this improvement
will only be real if the assumption of representativeness
explained in algorithm section agrees. Under this as-
sumption, we estimate that our algorithm achieves an
average accuracy near .71 (.79 .70 and .64 for each
subject).
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Subject 1

Figure 1. Temporal window graphs of 1 + 2 → 3 condition with labeling obtained from algorithm without online improvement, algorithm with online
improvement, and subject 1. Each one shows labeling along time and index value of transition detector. Below, corresponding projections into
canonical variates space .

Subject 2

Figure 2. Temporal window graphs of 1 + 2 → 3 condition with labeling obtained from algorithm without online improvement, algorithm with online
improvement, and subject 2. Each one shows labeling along time and index value of transition detector. Below, corresponding projections into
canonical variates space .
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Subject 3

Figure 3. Temporal window graphs of 1 + 2 → 3 condition with labeling obtained from algorithm without online improvement, algorithm with online
improvement, and subject 3. Each one shows labeling along time and index value of transition detector. Below, corresponding projections into
canonical variates space .

Subject 1

Figure 4. Temporal window graphs of 1 + 2 + 3 → 4 condition (test condition) with labeling obtained from algorithm without online improvement and
algorithm with online improvement over subject 1. Each one shows labeling along time and index value of transition detector. Below, corresponding
projections into canonical variates space .
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Subject 2

Figure 5. Temporal window graphs of 1 + 2 + 3 → 4 condition (test condition) with labeling obtained from algorithm without online improvement and
algorithm with online improvement over subject 2. Each one shows labeling along time and index value of transition detector. Below, corresponding
projections into canonical variates space .

Subject 3

Figure 6. Temporal window graphs of 1 + 2 + 3 → 4 condition (test condition) with labeling obtained from algorithm without online improvement and
algorithm with online improvement over subject 3. Each one shows labeling along time and index value of transition detector. Below, corresponding
projections into canonical variates space .

7


