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Abstract Due to its high temporal resolution, electroencephalography (EEG) is widely used to

study functional and effective brain connectivity. Yet, there is currently a mismatch between the

vastness of studies conducted and the degree to which the employed analyses are theoretically

understood and empirically validated. We here provide a simulation framework that enables

researchers to test their analysis pipelines on realistic pseudo-EEG data. We construct a minimal

example of brain interaction, which we propose as a benchmark for assessing a methodology’s

general eligibility for EEG-based connectivity estimation. We envision that this benchmark be

extended in a collaborative effort to validate methods in more complex scenarios. Quantitative

metrics are defined to assess a method’s performance in terms of source localization, connectivity

detection and directionality estimation. All data and code needed for generating pseudo-EEG data,

conducting source reconstruction and connectivity estimation using baseline methods from the

literature, evaluating performance metrics, as well as plotting results, are made publicly available.

While this article covers only EEG modeling, we will also provide a magnetoencephalography (MEG)

version of our framework online.
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1 Introduction

Electromagnetic source imaging, that is the estimation of the activation time courses and locations

of the neuronal populations (sources) contributing to an electro- or magnetoencephalographic

(EEG/MEG) recording, is a challenging inverse problem. Lacking a unique solution, it can only
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be solved approximately using prior assumptions on the source activity. To date, a large variety

of inverse solutions exist, accounting for the fact that different experimental settings may require

different characterizations of the sources (Baillet et al., 2001a). Distributed solutions estimate the

activity of the entire brain at once. Early approaches used spatial smoothness constraints to obtain

a unique solution (Hämäläinen and Ilmoniemi, 1994; Pascual-Marqui et al., 1994). Other researchers

introduced sparsity penalties to obtain spatially focal sources (Haufe et al., 2008, 2009; Ding and He,

2008; Owen et al., 2012). The advent of powerful computing solutions also enabled the simultaneous

localization of entire time series, the spatio-temporal dynamics of which have been modeled using

various combinations of penalty terms (e.g., Ou et al., 2009; Haufe et al., 2011; Gramfort et al.,

2013b; Castaño Candamil et al., 2015). Another type of inverse procedures is based only on temporal

assumptions, while the source activity is estimated separately for each brain location(Van Veen

et al., 1997; Mosher and Leahy, 1999; Gross et al., 2001).

A related problem is the EEG/MEG-based analysis of brain connectivity, which is concerned

with the estimation of interactions between sources based on their reconstructed time courses. Just

as in EEG/MEG source imaging, a wealth of methods exist, which are based on different models of

brain interaction. Among the most popular methods are approaches that define interaction either

based on the cross-spectrum (Nunez et al., 1997; Nolte et al., 2004, 2008; Marzetti et al., 2008;

Ewald et al., 2012; Chella et al., 2014; Shahbazi et al., 2015), Granger causality (Kamiński and

Blinowska, 1991; Astolfi et al., 2006; Schelter et al., 2009; Wibral et al., 2011; Valdes-Sosa et al.,

2011; Haufe et al., 2012a; Barnett and Seth, 2014), dynamic causal modeling (Kiebel et al., 2006,

2008; Stephan et al., 2007), and other non-linear relationships such as correlations of the phases

or amplitudes of brain rhythms (Brookes et al., 2011, 2012; Siegel et al., 2012; Hipp et al., 2012).

There is a host of literature employing such methods to research questions in basic and clinical

neuroscience (e.g., Supp et al., 2007; Sasaki et al., 2013; van Mierlo et al., 2014; Barttfeld et al.,

2014). Brain connectivity estimation however builds on the correct localization and time series

reconstruction in the first stage. It is therefore more challenging than inverse source reconstruction

alone and needs careful validation.

Evaluating the quality of inverse solutions and connectivity estimates is not straightforward, as

an objective ground truth is typically not available. Inverse solutions have been compared to spatial

maps obtained from functional magnetic resonance imaging (fMRI) (Lantz et al., 2001; Grova et al.,

2008). Since the exact relationship between EEG/MEG activity and the BOLD signal measured

by fMRI is, however, unclear, this approach provides only weak evidence for correct localization.

Intracranial electrophysiological recordings as well as surgical outcome have been proposed as a

possible means of validation in patients undergoing surgery (e.g. Benar et al., 2006; Vulliemoz et al.,

2010; Zwoliński et al., 2010). Such invasive procedures are however limited by the fact that patterns

of electrical current flow are strongly affected by tissue inhomogeneities such as lesions and skull

holes, which are typically neglected when building the electrical volume conductor model in which

source localization is carried out. Phantoms studies (Leahy et al., 1998; Baillet et al., 2001b) may

offer a more controlled way of validating inverse methods and the underlying forward (volume

conductor) model, but are technically challenging.
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As the forward problem has a unique solution that can be well approximated using numerical

methods (Sarvas, 1987; Vorwerk et al., 2014; Haufe et al., 2015; Huang et al., 2015), it is convenient

to study the effect of inverse modeling in isolation for a fixed volume conductor model. This can be

done without a phantom using numerical simulations. Here, the forward model is summarized as a

‘lead field’ matrix, which is applied to the simulated source time series to yield pseudo-EEG data.

Simulations allow one to conveniently and objectively test methods under different signal-to-noise

ratios (SNR), as well as for different spatial and dynamical characteristics of the sources, and are

therefore widely used for benchmarking purposes in the source modeling literature (e.g., Darvas

et al., 2004; Haufe, 2011; Gramfort et al., 2013b).

In the same way as EEG/MEG based brain connectivity analyses are more challenging than

inverse source reconstruction alone, their validation is also more challenging. On one hand, validation

in real data is less straightforward, as experimental settings, for which the location of the underlying

sources as well as their connectivity is known, are more rare compared to the case when only the

source locations need to be known. On the other hand, even when the ‘ground truth’ is available, it

is difficult to define appropriate performance measures, as inevitable localization errors can render

the subsequent assessment of source connectivity between the true source locations inappropriate.

This problem also applies to simulations.

Presumably due to these difficulties, it has become common practice that authors conduct and

report brain connectivity analyses of real data without or with only limited empirical validation of

the employed methodology. In some studies, the applied connectivity measure is simply presented as

the ‘definition’ of interaction. Of those simulations provided in the literature, many do not apply to

the EEG/MEG case due to insufficient modeling or complete disregard of the linear source mixing

caused by volume conduction in the head, as well as disregard of additive noise (e.g., Korzeniewska

et al., 2003; Astolfi et al., 2006, 2007; Velez-Perez et al., 2008; Barrett et al., 2012; Silfverhuth

et al., 2012; Wibral et al., 2013; Sameshima et al., 2015). Other simulation studies have started to

explicitly include EEG forward models (e.g., Schoffelen and Gross, 2009; Haufe et al., 2010, 2012a;

Ewald and Nolte, 2013; Rodrigues and Andrade, 2015; Cho et al., 2015).

Source crosstalk and correlated noise as caused by volume conduction can lead to large false

detection rates for a number of established connectivity metrics, among them seemingly intuitive

measures such as Granger Causality (see Nolte et al., 2004, 2008; Haufe et al., 2012b,a; Vinck

et al., 2015; Winkler et al., 2015). These results underline the importance of testing methods under

realistic simulated conditions in order to avoid unjustified conclusions on real data. Validating

source connectivity methodologies is also a prerequisite for justifying subsequent analyses such as

the study of network properties of the estimated connectivity graphs (De Vico Fallani et al., 2007;

Rubinov and Sporns, 2010; Mullen et al., 2011; Barttfeld et al., 2014; Bola and Sabel, 2015), which

crucially depend on the correctness of the estimated connections.

Considering the vast and steadily growing body of literature on EEG/MEG based brain connec-

tivity analysis, we believe that the field would benefit from a standardized benchmark. We here

present a first effort towards this, focusing on EEG. We present a simulation framework for generat-

ing realistic pseudo-EEG data from underlying interacting brain sources. Based on this framework,

we develop a benchmark for validating the performance of inverse source reconstruction and brain
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connectivity analyses. We define three simple criteria to quantify a methodology’s success in terms

of source localization, the detection of the presence of connectivity, and directionality estimation.

Through being defined on the coarse level of eight regions of interest (ROI) identical to the brain

octants, these measures are by construction fairly robust with respect to slight mislocalizations of

the sources.

While the proposed benchmark is limited to what we consider a minimal realistic case of

brain interaction, it can be extended to model more complex cases. Researchers employing EEG-

based connectivity analyses may create versions of the benchmark that are specifically tailored to

assessing the validity of their methodologies. To facilitate such efforts, all data and code needed

for generating pseudo-EEG data, conducting source reconstruction and connectivity estimation

using baseline methods from the literature, evaluating performance metrics, as well as plotting

results, are made publicly available in Matlab format. Moreover, unlabeled data generated under

the proposed minimal model of interaction are made available online. Researchers are invited

to analyze these data as part of a data analysis challenge, which will be announced at http:

//bbci.de/supplementary/EEGconnectivity/.

2 Objectives

Our goal is to provide a simulation framework and benchmark with the following properties.

Realism

Simulated pseudo-EEG data should be sufficiently realistic to provide an undistorted view of the

performance of EEG-based connectivity analyses. To this end, the following features are implemented.

– The use of a realistic finite element volume conductor model including six tissue types (Haufe

et al., 2015; Huang et al., 2015), integrating recently formulated guidelines for volume conductor

modeling of the human head (Vorwerk et al., 2014).

– The presence of interacting sources exerting time-delayed influence on another.

– Interactions being confined to a narrow frequency band.

– Realistic source locations being confined to the cortical manifold and emitting electrical currents

perpendicular to the local surface.

– Variable locations, spatial extents and depths of the sources.

– The presence of independent background brain processes with 1/f (pink noise) spectra.

– The presence of measurement noise.

– Broad yet realistic SNR ranges.

– The availability of separate baseline measurements not containing interacting sources.

Standardization

The framework makes use of established standards. As many of the major software packages for

EEG data analysis are based on Matlab (The Mathworks, Natick, MA) (Delorme and Makeig, 2004;

http://bbci.de/supplementary/EEGconnectivity/
http://bbci.de/supplementary/EEGconnectivity/
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Acar and Makeig, 2010; Delorme et al., 2011; Tadel et al., 2011; Oostenveld et al., 2011), Matlab is

adopted as the simulation platform. The generated data can be analyzed within existing packages,

or using stand-alone code. Our standardization efforts moreover include

– The use of a highly detailed anatomical template of the average adult human head (Fonov et al.,

2009, 2011; Haufe et al., 2015; Huang et al., 2015).

– The use of to the Montreal Neurological Institute (MNI) coordinate system (Evans et al., 1993;

Mazziotta et al., 1995).

– The use of the 10/5 electrode placement system (Oostenveld and Praamstra, 2001).

Availability

To facilitate easy adoption, all involved data and codes are made publicly available. This includes

lead fields, surface meshes and electrode coordinates, as well as codes for generating simulated

data, evaluating performance metrics, and conducting source reconstructions and connectivity

estimations using baseline methods from the literature. We also provide routines for plotting EEG

scalp potentials as well as source distributions.

Minimality

To provide an initial assessment of any method, we propose a benchmark that focuses on a minimal

realistic case of brain interaction. For this benchmark we restrict ourselves to

– The presence of only two interacting sources.

– Linear interaction.

– Uni-directional information flow.

– Spatially non-overlapping sources being confined to different brain octants.

Unability of a method to deal with this case will raise doubt on its eligibility for EEG-based

connectivity estimation in general.

Quantitative evaluation

All evaluations are carried out on the coarse level of eight regions of interest (ROIs) that are

identical to the octants of the brain. Quantitative measures for assessing source localization error,

the detection of brain connectivity, and the estimation of interaction directionality are provided.

Extendability

The framework can serve as a basis to model and benchmark more complex types of brain interaction

in order to enable researchers to test their preferred methods on appropriately designed data. A

number of potential extensions are outlined in Section 6.1.
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3 A realistic head model for simulating EEG data

The basis of the proposed work is are several Matlab script for simulating the activity of neuronal

populations in specific brain locations, and mapping that activity to EEG sensors using a realistic

model of electrical current propagation in the head.

3.1 Forward model of EEG data

The so-called forward model of EEG data describes how neural activity in the brain maps to the

EEG sensors. Specifically, it describes the flow of the extra-cellular ionic return currents emerging

in response to the intra-cellular neuronal activity. The forward model comprises information about

the geometries of the various tissue compartments (gray matter, white matter, cerebrospinal fluid,

skull, skin) in the studied head, as well as the conductive properties of these tissues. Under the

assumption that the quasi-static approximation of Maxwell’s equations holds for the frequencies

typically studied in EEG, it is linear (Sarvas, 1987; Baillet et al., 2001a). In its discretized form it

reads

x(t) = Lj(t) + ε(t) , (1)

where the time-dependent 3R-dimensional vector j(t) represents the directed primary currents

at R distinct locations on the cortical surface, the M × 3R lead field matrix L describes the

relationship between primary currents and the observable scalp potentials at M sensors, and ε(t) is

an M -dimensional noise vector.

Inverse source reconstruction is concerned with the estimation of the source primary currents j(t)

given the measurements x(t) in a given head model L, while functional or effective brain connectivity

estimation is concerned with the estimation of the information flow between brain sites from either

j(t) or (less commonly) x(t). In order to simulate physically realistic EEG data for the purpose of

benchmarking, source time series j(t) mimicking the behavior of macroscopic neuronal populations

are generated based on prior assumptions on the dynamic properties (e. g. coupling structure) of the

populations. These source time series, which are localized on the cortical surface, are then mapped

to the EEG sensors by means of the lead field L. Finally, a correlated noise vector ε(t) comprising

measurement noise as well as artifactual (such as line noise or muscular) and background brain

activity is added.

3.2 Head model

We here use lead fields that were precomputed in the so-called New York Head (Haufe et al., 2015;

Huang et al., 2015). The New York Head model combines a highly detailed magnetic resonance

(MR) image of the average adult human head with state-of-the-art finite element electrical modeling.

It is based on the ICBM152 anatomy provided by the International Consortium for Brain Mapping

(ICBM), which is a nonlinear average of the T1-weighted structural MRI of 152 adults. A detailed
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segmentation of the New York Head into six tissue types (scalp, skull, CSF, gray matter, white matter,

air cavities) was performed at the native MRI resolution of 0.5 mm3. Based on this segmentation,

a finite element model (FEM) was solved to generate the lead field. The model was evaluated

for 231 electrode positions including 165 positions defined in the 10-5 electrode placement system

(Oostenveld and Praamstra, 2001), and for 75 000 nodes of a mesh of the cortical surface. The

cortical surface was extracted using the BrainVISA Morphologist toolbox (Rivière et al., 2003;

Geffroy et al., 2011). For conducting the simulations and evaluations proposed in this work, subsets

of 108 electrodes and 2 000 cortical locations were selected for practical reasons. The lead field

was referenced to the common average of the 108 selected electrodes. For plotting purposes in this

paper, results are mapped onto a smoothed version (Tadel et al., 2011) of the full cortical mesh.

Figure 1 depicts the New York Head surface with 108 electrodes mounted, as well as the original

and smoothed cortical surface.

Fig. 1: The New York Head anatomy Left: head surface with 108 electrodes placed. Center: high-
resolution cortical surface. Right: smoothed cortical surface used for plotting. Cortical sulci are
marked in dark color.

3.3 Regions of interest

Eight regions of interest (ROIs) identical to the octants of the brain are defined. To ensure that

octants cover brain areas of roughly similar size, the origin of the coordinate system was shifted

based on cutting the cortical mesh into two halves each containing an equal number of nodes. The

cutting planes obtained this way are defined by the equations x = 0 mm (separating left and right

hemispheres), y = -18.7 mm (separating anterior and posterior hemispheres) and z = 12.8 mm

(separating superior and inferior hemispheres), where all coordinates given in MNI space. The

combination of the three hyperplanes defines eight octants as shown in Figure 2.

4 A minimal connectivity benchmark

In the following, we provide the specifics of a benchmark intended to provide a first assessment of

EEG-based brain connectivity estimation pipelines in a minimal setting involving brain interaction.
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Octant MNI coordinates Color

RAI Right Anterior Inferior x ≥ 0mm & y ≥ -18.7mm & z < 12.8mm Gray
RAS Right Anterior Superior x ≥ 0mm & y ≥ -18.7mm & z ≥ 12.8mm Pink
RPI Right Posterior Inferior x ≥ 0mm & y < -18.7mm & z < 12.8mm Brown
RPS Right Posterior Superior x ≥ 0mm & y < -18.7mm & z ≥ 12.8mm Yellow
LAI Left Anterior Inferior x < 0mm & y ≥ -18.7mm & z < 12.8mm Orange
LAS Left Anterior Superior x < 0mm & y ≥ -18.7mm & z ≥ 12.8mm Green
LPI Left Posterior Inferior x < 0mm & y < -18.7mm & z < 12.8mm Blue
LPS Left Posterior Superior x < 0mm & y < -18.7mm & z ≥ 12.8mm Red

Table 1: Division of the brain into eight octants.

A

B

Fig. 2: Division of the cortex into eight octants. A: complete tesselation. B: seed regions used to
sample source centers.

4.1 Spatial structure of the sources

In each instance of the experiment, two distinguished brain sources, the driver-receiver relationship

of which is to be analyzed, are modeled. Each of these sources is confined to a different randomly

assigned brain octant. Within each octant, a random node of the cortical mesh is picked as the

center of the source activity. The locations d1 and d2 of these center nodes are required to be

at least 10 mm away from the octant boundaries. Note that the randomized sampling of source

locations leads to a considerable variation of source depth with sources in inferior regions being

deeper than sources in corresponding superior regions, and sources in posterior regions being deeper

than corresponding sources in anterior regions (see Figure 3). Here, depth is defined as the mean

Euclidean distance of the center node from all scalp electrodes.

The spatial distribution of the source current amplitudes is modeled by a Gaussian function,

where the geodesic distance between nodes of the cortical mesh is used as the distance metric. The

spatial standard deviation of the amplitude distributions is sampled uniformly between 10 mm

and 40 mm. The amplitude at nodes located outside the seed octant is set to zero, such that no

‘leakage’ of activity across octant borders occurs, and the true connectivity between octants can

always be defined unambigously. The amplitude distributions are divided by their `2-norm for each
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source separately. The orientation of the neuronal current at each node is defined as the normal

vector w. r. t. the mesh surface at that node. Scalp topographies for each source are computed by

multiplying the 3D current distribution j(t) (the product of amplitude and orientation) with the

lead field L, that is, by summing up the contributions from all nodes of the source octant using

Eq. 1. Figure 3A depicts the source amplitude distributions, as well as the resulting scalp potentials,

for two representative sources.

RAI, σ = 10mm LPS, σ = 40mm
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Fig. 3: A: Examples of the spatial structure of the simulated brain sources. Left: source with small
spatial extent (spatial standard deviation along cortical manifold σ = 10 mm) in the right anterior
inferior octant of the brain. Right: source with large (σ = 40 mm) spatial extent in the left posterior
superior octant of the brain. Upper panel: source amplitude distribution. Note that sources do not
extend into neighboring octants. Lower panel: resulting EEG field potentials calculated in the New
York Head head model assuming currents oriented perpendicular to the cortical surface. B: Depth
distribution (mean and standard deviation) of the cortical surface points belonging to each of the
8 ROIs. The depth of a point is defined as the mean Euclidean distance from all EEG sensors.
Inferior regions are deeper than corresponding superior regions, and posterior regions are deeper
than corresponding anterior regions.

4.2 Source dynamics

The time courses of the two distinguished sources are modeled using bivariate linear autoregressive

(AR) models of the form[
z1(t)

z2(t)

]
=

P∑
p=1

[
a11(p) a12(p)

a21(p) a22(p)

][
z1(t− p)
z2(t− p)

]
+

[
ε1(t)

ε2(t)

]
, (2)
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where aij(p), i, j ∈ {1, 2}, p ∈ {1, . . . , P} are linear AR coefficients, and εi(t), i ∈ {1, 2} are

uncorrelated standard normal distributed noise variables (innovations). Importantly, the off-diagonal

entries a12(p) and a21(p) describe time-delayed linear influences of one source on another. A sampling

rate of 100 Hz, and an AR model order of P = 5 is used.

In each instance of the simulation, either one out of two possible variants of the linear dynamical

system z(t) = [z1(t), z2(t)]> is constructed. The probability to determine which variant is generated

is set to 50 %. For the first variant, zint(t), a12(p), p ∈ {1, . . . P} is set to zero for all lags p, while

a21(p), p ∈ {1, . . . P} is generally nonzero and randomly drawn. Thus, there is a unidirectional time-

delayed influence of zint1 (t) on zint2 (t). For the second variant, znonint(t), all offdiagonal coefficients

a12(p) and a21(p), p ∈ {1, . . . P} are set to zero, leaving the two time series znonint1 (t) and znonint2 (t)

completely mutually independent. In all cases, the AR coefficients are sampled from the univariate

standard normal distribution. Only stable AR systems are selected. Moreover, we require that

the combined spectral power of the two sources in the alpha band (8–13 Hz), normalized by the

width of the alpha band exceeds the overall normalized power by a factor of 1.2. Sources are

bandpass-filtered in the alpha band using an acausal third-order Butterworth filter with zero phase

delay. The generated time series therefore represent alpha oscillations that are either mutually

statistically independent or characterized by a clearly defined sender-receiver relationship.

4.3 Generation of pseudo-EEG data

Pseudo-EEG data are created from simulated underlying brain sources. We describe the procedure
for the interacting sources zint(t), while analogous steps are taken for the independent sources
znonint(t). A total of T = 18 000 data points of the source time series zint(t) are sampled from
the bivariate AR process described above, corresponding to a 3 minute recording. These source
time courses are then placed onto two patches of the cortical surface specified by the locations,
orientations and Gaussian amplitude distributions described in Section 4.1, resulting in the source
distribution jint(t). Additionally, 500 mutually statistically independent brain noise time series
characterized by 1/f -shaped (pink noise) power and random phase spectra are generated, and placed
randomly at 500 locations sampled from the entire cortical surface. The resulting noise current
density is denoted by jnoise(t). The signal and noise sources from the brain are then normalized by
their Frobenius norm in the alpha band, and summed up

j(t) = α
jint(t)

‖jint(t)‖F
+ (1− α)

jnoise(t)

‖j̃noise(t)‖F
, (3)

where j̃noise(t) is the result of filtering jnoise(t) in the alpha band. The signal-to-noise (SNR)
parameter α is drawn uniformly from the interval [0.1, 0.9]. The resulting source distribution j(t)
is projected to the EEG sensors through multiplication with the lead field L, giving rise to the
brain contribution xbrain(t) of the EEG. Spatially and temporally uncorrelated vectors xnoise(t)
mimicking measurement noise are sampled from a univariate standard normal distribution. The
overall pseudo-EEG data are generated according to

xint(t) = 0.9
xbrain(t)

‖xbrain(t)‖F
+ 0.1

xnoise(t)

‖xnoise(t)‖F
. (4)
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Lastly, a highpass filter (third order acausal Butterworth) with cutoff frequency at 0.1 Hz is applied

to xint(t).

In the same way as xint(t), xnonint(t) is generated by replacing the interacting sources zint(t) with

their non-interacting counterparts znonint(t). Thereby, it is ensured that xnonint(t) does not represent

any form of brain interaction at all. In addition to the data set either containing interacting or

non-interacting sources, an analogous baseline dataset xbl(t) lacking any contribution of the two

alpha sources is constructed. This measurement mimicks (the absence of) a task involving the

sources of interest, and can be used to aid source localization.

A complete instance of an experiment instance consists of two measurements: Either xint(t) or

xnonint(t), and xbl(t). Examples of the spectral properties as well as the eigenstructure of the three

measurements are depicted in Figure 4. The spectra of the measurements xint(t) and xnonint(t)

resemble real EEG measurements in that the overall 1/f -shaped spectrum is superimposed by a

peak in the alpha band (Figure 4A and B). Since the alpha sources are not contained in the baseline

measurement, this peak is lacking in xbl(t). The singular values of all three pseudo-measurement

are almost indistinguishable (Figure 4C).

A C

B

Fig. 4: Spectral properties of instances of the three pseudo EEG measurements xint(t) (interacting),
xnonint(t) (non-interacting), and xbl(t) (baseline) at an SNR of 0 dB (α = 0.5). A: Power spectra at
an electrode with high alpha power visible as a distinct peak in xint(t) and xnonint(t). B: Time-series
trace at that electrode. Note the absence of an alpha oscillation in xbl(t). C: Singular value spectra
of all three measurements are almost indistinguishable.
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4.4 Task

For each given instance of the experiment, the following three questions are asked:

1. Localization: In which two brain octants are the alpha sources of interest located?

2. Connectivity: Does the data set contain interaction between the two simulated brain sources

z1(t) and z2(t)?

3. Direction: If so, which of the two octants contains the sending source zint1 (t), and which one

contains the receiving source zint2 (t)?

4.5 Performance measures

The correctness of the answers to the above-mentioned questions is assessed quantitatively using

the following three performance measures.

LOC

This measure compares the true octants containing the alpha sources with the estimated ones. Each

source octant estimated correctly yields the score of 1/2. Each octant estimated wrongly yields the

score of -1/2. A researcher can also choose to not estimate either one or both locations. For each

case for which the estimation of a source octant is refused, 0 points are scored. According to these

rules, the expected value under random guessing is -1/2.

CONN

This measure evaluates the correctness of the estimation of the presence of interaction in a particular

data set. Correct estimates lead to a score of +1, whereas incorrect estimates are penalized with

a score of -2. Again, researchers can refuse to make a decision, which leads to a score of 0. Thus,

CONN may take one of the values -2, 0 and +1. The expected value under random guessing is -1/2.

Please note that this measure is independent of the estimation of source locations.

DIR

This measure evaluates the correct assessment of interaction direction by comparing the estimated

connectivity between estimated sources with the true connectivity between simulated sources. A

correct estimation of directionality yields a score of 1, while a wrong estimation yields a score of -2.

Refusal to estimate directionality yields 0 points. Note that the performance measure DIR depends

on LOC and CONN estimates. A point can only be obtained if a) the source locations are estimated

correctly and b) if interaction is present and correctly detected.

Note that for all three measures, the expected score under random guessing is smaller than the

score obtained by not providing an answer. Refusing a decision in case of weak evidence is therefore

a promising strategy to improve each score.
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5 Example

5.1 A source connectivity estimation pipeline using LCMV, ImCoh and PSI

We implemented an example processing pipeline for answering the three questions outlined above

using established methods from the literature. In this pipeline, we first calculate signal power

on sensor level in order to estimate the signal-to-noise-ratio (SNR) within the alpha band. To

compute the cross-spectrum, from which power and coherency can be calculated, we split the

data in segments of one second (100 samples) length and use a segment overlap of 50 %. This

results in a frequency resolution of 1 Hz. To obtain a scalar value as an estimate for signal power,

we first take the mean power over all channels of the data (denoted as pd(f)) at each frequency

8 Hz ≤ f ≤ 13 Hz. Second, we take the maximum of pd(f) over all frequencies in the alpha band, i.e.

max [pd (8 Hz) . . . pd(13 Hz)] which corresponds to the value of alpha peak in the power spectrum.

As a noise power estimate we consider the mean over frequencies of the mean over channels of the

provided baseline data, i.e., mean [pb (8 Hz) , . . . , pb(13 Hz)]. This finally leads to the estimate of the

SNR given by

SNR =
max [pd (8Hz) . . . pd(13Hz)]

mean [pb (8Hz) . . . pb(13Hz)]
. (5)

The value SNR is used to decide if an estimate of the source locations is provided. Only for

SNR > 1.5, we consider the signal power as sufficiently strong to provide a reliable source estimate.

Please note that the value of 1.5 is set rather arbitrarily and could be further optimized. However,

our aim here is not to establish an optimal solution but to give an example of a possible processing

pipeline with practical relevance. The imaginary part of coherency (ImCoh, Nolte et al., 2004) on

sensor level is used to estimate if interaction is present in a data set. As a signal estimate of the

ImCoh (ImCohd), we consider the absolute value of the maximum ImCoh over all channel pairs

and frequency bins in the alpha band computed from the data set. A noise level is estimated as

the same value computed on the baseline data set (ImCohb). If the difference ImCohd − ImCohb

exceeds the value 0.1, we here assume that there is interaction present in the data set. Similar

to the threshold used before, proper statistics, e.g. by resampling procedures, might enhance the

performance both in terms of sensitivity and by avoiding false positives. As an inverse filter we use a

Linear-constrained Minimum Variance beamformer (LCMV, Van Veen et al., 1997) applied on the

real part of the cross-spectrum averaged over all frequency bins in the alpha band. Given the inverse

filter, the voxel-wise power is computed for the data and the baseline data. Denoting those powers

by pd and pb, a voxel-wise index of baseline-normalized alpha-band source power is defined as

p =
pd

pb
. (6)

The overall alpha power in each of the eight brain octants is computed by summing over the

appropriate parts of p. The two octants displaying highest overall alpha power are selected as the

assumed source regions of the alpha oscillations. From each of these two regions, the voxel the

highest power is selected. Next, for these two voxels, the source time series are are calculated by
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beamforming the sensor level data to source space. Using the phase-slope index (PSI, Nolte et al.,

2008), time-delayed interaction is assessed between this particular pair of selected voxels of the two

octants. Here, we again use a 1 s window, amounting to a 1 Hz frequency resolution, and evaluate

phase slopes only in the alpha frequency range between 8 and 13 Hz. Through a jackknife procedure,

PSI provides a standardized signed measure of interaction direction, whose significance can be tested

using a one-sample z-test. Only if the p-value is smaller than an alpha level of 0.01, we consider the

interaction direction as reliable and provide an estimate.

To summarize the applied heuristic: a) only if the power SNR exceeds the threshold of 1.5,

source location estimates are provided; b) only if the difference in ImCoh between data and baseline

exceeds the threshold of 0.1, we consider an interaction being present in the data set; c) only if

both prior conditions meet and PSI yields a significant result, we provide an estimate of interaction

direction.

5.2 Results

We applied the analysis pipeline outlined above to 100 data sets generated using the procedures

outlined in Sections 4.1-4.3, and obtained the following performance scores: LOC = 0.54 ± 0.05,

CONN = 0.52± 0.11, DIR = 0.00± 0.05 (mean ± standard error).

Figure 5 shows the results obtained for one particular instance of the experiment generated

with an SNR of α = 0.5. The summed amplitude distribution of the two simulated sources is

depicted in the first row on the left as a color-coded heat map. The source centers d1 and d2 are

marked as black spheres. In this case, the simulated sources are located in the left parietal superior

(LPS) and right anterior superior (RAS) octants of the brain, with the source in RAS exerting

a unidirectional time-delayed influence on the source in LPS. The middle left part of the figure

shows the source amplitude distribution p as estimated using LCMV beamforming. Both source

locations are recovered, although the source in LPS is barely observable. The lower part of Figure 5

shows the power spectrum where a peak in the alpha range is observable compared to the baseline

measurement. Here, the power offset leads to an estimated SNR greater than 1.5 such that a source

estimated is provided. Therefore, the attained localization score is LOC = 1.

In the lower right, the ImCoh for all channel pairs is shown as a butterfly plot. Furthermore,

the maximum over channel pairs of the absolute value of the ImCoh is displayed as a black dashed

line. Within the frequency band of interest (shown as vertical green lines), the maximum ImCoh

strongly exceeds the noise level. Hence, this data set is correctly classified to contain interaction

yielding a score of CONN = 1.

The upper right part shows the phase-slope index for all voxels calculated with respect to d1.

The positive values, indicated in red, show the sender of information. Hence, the analysis yields a

significant information flow from RAS to LPS. As also all other prerequisite are fulfilled (sufficiently

large SNR and interaction present), the attained direction score for this example is DIR = 1.

Note that this particular example was chosen mainly to demonstrate how directed connectivity

can be assessed and benchmarked. The reported results should not be regarded as a definite

statement about the performance of LCMV beamforming, ImCoh and PSI in general, as they
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were obtained using a multitude of ad-hoc heuristics, e. g. related to the usage of the separate

baseline measurement, arbitrarily chosen thresholds, and the usage of single voxel estimates in case

of localization and directionality estimation. In contrast, these techniques could also be used in

a multivariate fashion. In fact, rather than trying to optimize performance, our goal here was to

provide a comprehensible analysis pipeline using conventional tools in order to provide a baseline.

True AMP LCMV AMP PSI

Fig. 5: Results obtained for a particular instance of the experiment with α = 0.5 using LCMV
beamforming, ImCoh and the phase-slope index (PSI). Left upper part: amplitude of the simulated
sources, and of the sources estimated using LCMV beamforming. Centers d1 and d2 of the simulated
sources are marked as black spheres. Upper right part: The phase slope index (PSI) with d1 as a
reference. Lower left part: The power spectrum for the baseline condition and the data containing
oscillatory interaction. Lower right part: The imaginary part of coherency for all channel pairs and
the maximum of the ImCoh (black dashed line).

6 Discussion

Brain connectivity analysis using EEG/MEG is an emerging field of obvious relevance for basic

neuroscience and clinical research. Nonetheless, there is currently a lack of validation, and a resulting

confusion about the reliability of the available methods. It is in the interest of researchers using

connectivity analyses to address research questions that all parts of an analysis pipeline including

head modeling, source reconstruction, connectivity estimation, graph-theoretical analysis, and

statistical testing are rigorously validated under circumstances as realistic as possible. In the absence

of a clear external ground truth for real data, simulations using realistically modeled artificial data
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are a suitable way to implement such a testbed. We here provide a simulation framework that can be

used as a starting point for a systematic (re)evaluation of popular estimation pipelines. Here we first

provide a discussion of our work including the limitations and possible extensions of the proposed

framework. We then go on to a general discussion of the major problems in EEG/MEG-based brain

connectivity estimation, and their potentials solutions.

6.1 Simulation framework and benchmark

Realism

Our aim was to create pseudo-EEG data as realistic as necessary to objectively benchmark connec-

tivity analyses, but at the same time as simple and controlled as possible. To this end, we use a

highly-detailed FEM volume conductor model of an average human head to map the activity of

all simulated brain sources into EEG sensor space. The dynamics of all background brain sources

are modeled by pink noise processes, whereas the interacting sources are generated as band-limited

linear AR processes. The pseudo-EEG data obtained that way are very similar to real EEG data in

terms of power spectra and spatial correlation structure.

As our model is rather simplistic compared to the complexity of the head and brain, any of our

modeling choices is of course arguable. For example, the quasi-static approximation of Maxwell’s

equations underlying our forward modeling is considered accurate by the majority of researchers in

the field, but has recently been questioned (Gomes et al., 2016). Other parameters of our simulation,

such as those concerning the distributions and dynamics of the modeled brain and noise sources

are also debatable. For example, one might question the linearity of the source interaction and the

absence of any non-Gaussian signal or noise component, as well as the fact that our signal sources

are restricted to the alpha band rather than obeying general 1/f spectra. To this end, we would

like to note that none of these choices is meant to be definite. Rather, the proposed benchmark is

is supposed to be just an example, and should be extended in the future to include more realistic

pseudo-EEG data as well as to deal with more complex estimation tasks.

Regarding the present task, one might argue that the division of the brain into octants is

artificial and does not represent the structural or functional organization of the brain. The actual

anatomy of the brain is however irrelevant when dealing with simulated data as long as a realistic

physical model of volume conduction is employed. The division into octants was preferred here over

functionally-informed brain parcellations into units such as lobes or Brodman areas, as it facilitates

a simplified and more flexible performance evaluation.

Further limitations and possible extensions

Here we discuss potential extension to our benchmark that should be implemented in the future to

deal with more complex cases of brain interaction.

Non-linearity and non-Gaussianity We here only consider linear interaction using autoregressive

models. To demonstrate advantages of non-linear or general non-parametric approaches to connec-
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tivity estimation (Wibral et al., 2011; Marinazzo et al., 2011), it may be useful to create a separate

branch of the benchmark including particular non-linearities such as neural mass models (Spiegler

et al., 2010) or Kuramoto dynamics (Blythe et al., 2014; Rodrigues and Andrade, 2015). Nonlinear

source dynamics can be easily included in the current framework by replacing the function that

generates the bivariate source signals (see Appendix B in the Supplementary Material). As for

the linear case, both an interacting and a non-interacting version of the source time series should

be provided, and both should coincide in all essential data properties except the source coupling.

Another limitation of the current framework is that all noise sources obey Gaussian distributions,

while introducing a certain amount of non-Gaussian noise mimicking realistic artifacts would be

more realistic.

Bi-directional interaction While we here only consider unidirectional information flow, as modeled,

e. g., through bivariate AR models with all nonzero off-diagonal coefficients a12(p). Studying the

more realistic bidirectional case is also worthwhile (Vinck et al., 2015). One way to do this would be

to draw uni- and bidirectional source AR models with 50 % probability, so that one of the following

three cases can occur: only source 1 is sending, only source 2 is sending, both sources are sending

information to each other. There are two possible ways in which the directionality measure DIR

could be adapted to deal with the bidirectional case. First, the full score of 1 per spatial direction

is only given if the correct one of the three possible cases is determined; otherwise the score is -2.

Second, for each correctly estimated interaction direction (flow from octant 1 to octant 2 and flow

from octant 2 to octant 1), a sub-score of +1/2 is given, while -1 is given for incorrect estimations.

More than two interacting sources and network analyses Graph-theoretical analyses of estimated

source connectivity networks are becoming increasingly popular. Such approaches rely on the

presence of dense network structures involving more than two interacting sources. To benchmark

them, it will be necessary to extend the current simulation framework, as well as the performance

measures LOC and DIR, accordingly.

Magnetoencephalography While this paper focuses on EEG, we are currently conducting an equivalent

effort for MEG. To this end, we will provide lead fields for a common MEG system in the same

anatomy considered here for EEG. This effort will not only make our framework useful for a larger

community. It will also allow for direct comparisons of the two modalities in terms of answering the

localization, connectivity presence and directionality questions on the same source configurations.

Alternative head models Finally, while we here provide a head model that can be used both to

simulate and reconstruct sources, it is theoretically more appropriate to conduct the reconstruction

part using a different model to avoid committing the so-called ‘inverse crime’ (Colton and Kress,

1997). As we here use a standardized geometry based on the MNI coordinate space and the 10-5

EEG electrode positioning system, this can be easily achieved using the templates readily available in

software packages such as Brainstorm or Fieldtrip without the need to perform certain preprocessing

steps such as MR segmentation and surface extraction.
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Strategies

There are multiple ways in which the location and connectivity of the two simulated alpha sources

could be estimated. The strategy pursued in the provided example (Section 5) is to apply inverse

source reconstruction first, define the two brain octants containing alpha sources based on alpha

power, and then analyze the directionality between those octants in a second step. Another valid way

would be to first analyze the full connectivity graph after source localization, and then determine

source octants based on maximal connectivity. Approaches using blind source separation techniques

(Gómez-Herrero et al., 2008; Marzetti et al., 2008; Haufe et al., 2010; Ewald et al., 2012) or avoiding

source representations entirely are also in principle valid as long as they lead to source octant and

connectivity estimates. Another interesting strategy could be to use large-scale machine learning

algorithms to learn localizations and connectivity structures from massive amounts of labeled

training data that could be generated within our framework. The downsides of this approach may

however be a general lack of insight into the estimation process as well as a lack of scalability to

more complex estimation tasks possibly involving more than two sources and many more than the

currently considered eight regions of interest.

Dissemination

All data as well as Matlab scripts required to generate new datasets, to run analyses using

standard methods, and to evaluate performance measures are made publicly available at http:

//bbci.de/supplementary/EEGconnectivity/. We here chose Matlab as the development platform,

as it is used in many of the most common software packages for EEG/MEG source analysis such as

EEGlab, Fieldtrip and Brainstorm (Delorme et al., 2011; Tadel et al., 2011; Oostenveld et al., 2011).

However, packages based on Python, such as MNE (Gramfort et al., 2013a), are gaining more and

more popularity, as Python is a powerful and free alternative to Matlab. In this regard it is worth

noting that the Matlab data structures provided here can also be read and processed using Python

software.

In addition, we provide data generated in 100 randomized instances of the proposed experiment

involving minimal examples of brain interaction (4.1–4.3), where the ground truth about the

locations and connectivity structure of the sources of interest is withheld. As a data analysis

challenge, researchers are invited to analyze these data with respect to source locations, the presence

of connectivity, and the direction of information flow. Results that are sent to us will be evaluated

in terms of the performance measures LOC, CONN and DIR, and the achieved scores will be

announced online as well as at an upcoming conference. To finetune their methods, researchers may

use the provided code to generate as many labeled training instances generated under the same

distribution as they wish. An overview of the provided data and code is given in Appendices A and

B in the Supplementary Material.

http://bbci.de/supplementary/EEGconnectivity/
http://bbci.de/supplementary/EEGconnectivity/
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6.2 Problems caused by volume conduction

Various commonly used connectivity measures suffer from large numbers of false positive detections

when applied to linear mixtures of source signals. That is, they may infer interactions with high

confidence even if the underlying sources are entirely statistically independent. We call such methods

‘non-robust’ (w.r.t. volume conduction). Non-robustness is a serious problem, as source mixing

due to volume conduction not only occurs on the EEG/MEG sensor level but is also present

in any source estimate due to the inevitable spatial leakage introduced by the inverse operator.

Benchmarking connectivity measures as part of an entire analysis chain starting from realistically

generated pseudo-EEG data as opposed to, e. g., merely testing their ability to reconstruct the

known connectivity structure of simulated sources is therefore of particular importance.

A counterexample for PLV, Coherence, Granger Causality, Transfer Entropy, PDC and DTF

Consider an example in which a single brain source s(t) spreads to two EEG electrodes x1(t) and

x2(t) as a result of volume conduction (alternatively, to two brain voxels ŝ1(t) and ŝ2(t) as a result

of a source reconstruction procedure). Assume moreover that these two channels (EEG electrodes or

brain voxels) pick up noises that are not completely correlated as a result of the measurement process

or by capturing (the reconstructions of) additional independent brain processes. No interaction

takes place. Yet, both channels are highly correlated due to being dominated by the same source’s

activity s(t). This will be reflected in a stable phase-delay as measured by the phase-locking value

(PLV, Lachaux et al., 1999) or coherence (the absolute value of complex coherency, see Nunez et al.,

1997), and might be misinterpreted as brain interaction. The presence of linearly independent noise

contributions in the two channels moreover allows both to mutually improve predictions of the

other channel’s future from past values. Thus, the two channels ‘causally interact’ in Granger’s

sense (Granger, 1969), as measured by varieties of Granger Causality (Granger, 1969; Geweke, 1982;

Marinazzo et al., 2011), Transfer Entropy (Vicente et al., 2011; Wibral et al., 2011), Directed Transfer

Function (DTF, Kamiński and Blinowska, 1991), and Partial Directed Coherence (PDC, Baccalá

and Sameshima, 2001). Figure 6 depicts this situation. These measures are therefore non-robust.

Robust connectivity measures

Imaginary part of coherency Without further knowledge about the (e.g. mixing properties of the) data,

is impossible to distinguish interactions happening with zero phase delay from trivial correlations

that are artifacts of volume conduction. Non-robust measures make no distinction between zero and

nonzero phase delays and are therefore prone to misinterpreting the often dominant instantaneous

correlations in EEG/MEG data as genuine interaction. For methods based on quantifying phase-

relations, a simple remedy is to analyze only the imaginary part of the cross-spectrum (Nolte et al.,

2004, 2008), which is equivalent to requiring the phase delay between two interacting signals to be

non-zero. Using this modification, measures such as coherence and the phase-locking value can be

‘robustified’.
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Fig. 6: Even in the case of only one brain source s(t), sensors x1(t) and x2(t) as well as estimated
sources ŝ1(t) and ŝ2(t) are highly correlated due to the mixing introduced by volume conduction
(green arrows), as well as inverse source mapping (red arrows). This lead to high values of coherence,
as well has high phase-locking values. As sensors and source estimates moreover pick up different
noise realizations ε1(t) and ε2(t) (or linear combinations therefor), x1(t) and x2(t) as well as
estimated sources ŝ1(t) and ŝ2(t) moreover ‘Granger-cause’ each other.

Time reversal An approach suitable for a larger class of interaction measures is time reversal. Its

idea is to reverse the temporal order of the data, which can be done either in sensor- or source

space without the need for decomposing the data using prior knowledge. Time-reversed data possess

the same instantaneous correlations as the original data, whereas their connectivity structure is

disrupted or even reversed. Statistical tests contrasting connectivity scores obtained on original

and time-reversed data can effectively cancel out those parts of the effect that are due to linear

mixing and thereby common to original and time-reversed data. It can be proven that time-reversal

robustifies every measure that is based only on second-order statistics of the data. Notable, this

includes many variants of Granger causality such as DTF and PDC (Haufe et al., 2012b,a). Moreover,

theoretical results for the validity of time reversed Granger causality in the presence of interaction

exist (Winkler et al., 2015). Applied to complex coherency, it can further be shown that the

imaginary part is preserved under time reversal, while the real part cancels out.

Surrogate data approach Non-robustness of any connectivity measures can also be regarded as a

result of improper statistical testing. Statistical significance of a measure is typically assessed by

estimating its distribution and comparing it to a baseline. For small sample sizes, this approach

may however result in low statistical power. An alternative is to compare a single measurement to a

distribution obtained under a null hypothesis. While samples of the null distribution are often not

available, it is possible to create arbitrary amounts of artificial null data by randomly manipulating

the original data. This concept is known as the ‘method of surrogate data’ (Theiler et al., 1992). In

brain connectivity studies, surrogate data must be consistent with the null hypothesis of no brain

interaction while sharing all other properties of the original data. Common approaches include the

use of randomly permuted samples (e.g., Muthuraman et al., 2014) or phase randomized signals

(e.g., Astolfi et al., 2005). These approaches however destroy all dependencies between time series,



A simulation framework for benchmarking EEG-based brain connectivity estimation methodologies 21

while it is easy to see (e.g., through the counterexample Figure 6) that EEG/MEG data as well as

their source estimates do exhibit significant correlations under the null hypothesis of independent

sources. Not accounting for these correlations results in too liberal tests for interaction.

The generation of surrogate data with realistic correlation structure is subject of ongoing research.

By using the same random phase offsets for all variables, Prichard and Theiler (1994) extend the

original phase-randomization approach to multivariate data in a way such that correlations between

variables are preserved. Dolan and Neiman (2002) describe an improved procedure that preserves

power spectra as well as coherence functions. Breakspear et al. (2003, 2004) use wavelets to

approximate the spatio-temporal correlation structure of the original data, while Palus (2008) use

a similar multiscale decomposition to even preserve certain non-linearities, which is of interest in

resampling approaches. The problem of potential non-Gaussianity in phase-randomized data is

discussed in Rath et al. (2012), while an overview over a number of surrogate approaches is provided

in Marin Garcia et al. (2013).

What is common to all these approaches is that the correlation structure is estimated from the

sensor data, and reproduced to the highest possible degree in the surrogates. Thereby, it might

be difficult for these algorithms to distinguish between instantaneous correlation caused solely

by volume conduction, and correlations that are side-effects of actual time-delayed or non-linear

interaction. This potential problem can however be circumvented by considering that the spatial

correlation of EEG/MEG data under the Null hypothesis is solely determined by the lead field.

We here propose to generate physically realistic surrogate EEG/MEG data as follows. First, the

sensor-space EEG/MEG data are mapped into source space using a ‘genuine’ linear inverse solution

P with LP = I. ‘Genuine’ here refers to methods providing an actual estimate of the distributed

current density j(t) as opposed to a voxel-wise activity index, and includes popular approaches

such as the weighted minimum-norm estimate (Hämäläinen and Ilmoniemi, 1994) and eLORETA

(Pascual-Marqui, 2007), but not beamformers. Next, potential interactions between sources are

destroyed while maintaining other statistical properties of the data such as the power spectrum by

using e. g., the method of Theiler et al. (1992). This gives rise to quasi-independent sources ǰ(t).

Finally, using the the lead field L, the quasi-independent time series are mapped back to sensor space

to obtain surrogate sensor-space data x̃(t) = Lǰ(t). These surrogates possess the spatio-spectral

correlation structure of real EEG/MEG data, but by construction contain no interaction. They are

then analyzed using the same pipeline that is applied to the original data. A Null distribution of the

statistics of interest (such as Granger scores) is established by repeating the analysis for sufficiently

many surrogate EEG/MEG datasets derived from different phase-randomizations of the sources.

The procedure depends on the choice of a volume conductor model L. As correct anatomical

information is not crucial for generating the surrogates, generic head models (e.g., Huang et al.,

2015) can be used. The criterion LP = I ensures that the procedure will recover the original data

when leaving out the phase randomization step, and therefore does not introduce any artificial

bias. It can always be met by setting a method’s regularization to zero. The application of the

regular estimation pipeline to the sensor-space surrogates may in general involve another inverse

source reconstruction step j̃(t) = P∗x̃(t). Here, P∗ is not necessarily identical to P as it may involve

regularization or amount to a beamformer. What is important to note is that the source-space
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surrogates obtained that way fundamentally differ from the quasi-independent sources ǰ(t) obtained

after phase-randomization in that they possess a realistic spatial correlation structure while still

perfectly complying with the null hypothesis.

The proposed method makes use of a volume conductor model to obtain surrogate data with

realistic spatio-temporal correlation structure. By generating these surrogates as realistic mixtures of

quasi-independent sources, it is per construction robust. Its statistical power in revealing non-trivial

interactions however needs to be rigorously quantitatively assessed and be compared to related

methods (see above), which is subject of our future work. One particular method that will be

included in the comparison is the method of Shahbazi et al. (2010). By employing blind source

separation (BSS) instead of a source imaging procedure, their method is capable of generating

surrogate data with similar theoretical properties, while bearing the further advantage that no

physical volume conductor model is required.

Potential remaining confounds

Significant findings by robust connectivity measures must relate to genuine time-delayed interaction

that cannot be explained by linear mixing of independent sources. Whether such findings can be

safely interpreted as reflecting neural as opposed to non-neural interaction however requires further

validation efforts. One problem may be the occurrence of hidden causes, which cannot be excluded

in practice due to the fact that EEG/MEG do not measure the entirety of human brain activity but

only a tiny fraction of it. It is moreover conceivable that detected time-lagged interactions are caused

by external factors like hemodynamics affecting different parts of the brain at different time lags.

The influence of such potential confounds should be investigated in further simulation studies. To

prevent inexact claims, it is further advisable to report results in terms of the measured quantities

(such as the phase slope index) only, and to be very careful when interpreting these results in terms

of their hypothesized underlying physiological phenomena such as neural interaction.

Contrasting experimental conditions

It is often assumed that by comparing connectivity scores between conditions the problem of

spurious connectivity can be overcome, as the ‘effect of volume conduction cancels out’. However,

this is not the case (see also Schoffelen and Gross, 2009). Volume conduction causes a linear

superposition of the active brain sources. It is therefore not a static factor but highly dependent

on the actual source activity. The value of any connectivity measure – even robust ones – depends

not only on the strength of the coupling of the interacting sources, but to a large degree also

on the SNR, which is a function of the strength of all sources including those not participating

in the interaction. To effectively rule out the effect of volume conduction and SNR, one would

require that the all brain and noise sources are identically active across conditions. This is however

an unrealistic assumption, as lower-level EEG/MEG features such as the power of certain brain

rhythms are much more likely to be measurably modulated by the experimental condition than the

strength of the interaction between such rhythms. As a result, even robust measures are unable to

objectively estimate the strength of an interaction unless they can be perfectly isolated through
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signal preprocessing. As a consequence, statements about the relative strength of an interaction

between experimental conditions have to be made very carefully. In the present benchmark, each

generated dataset provides a baseline measurement and a measurement that may or may not contain

brain interaction. Using these data it is possible to demonstrate that contrasting measurements is

not sufficient to rule out spurious connectivity for non-robust connectivity measures.

Analysis of network properties

Results of brain connectivity analyses are often further analyzed to infer structural properties of

the connectivity graphs such as ‘small-worldness’. The validity of such analyses obviously depends

on the correctness of the identified connections. For non-robust measures, the estimated network

may to a large degree reflect factors unrelated to connectivity, which can of course render graph

measures meaningless. Due to the non-random structure of the connectivity graph induced by these

factors, the popular way of obtaining Null distributions by randomly permuting the edges (e.g., Bola

and Sabel, 2015) is unlikely to lead to sufficiently robust statistics revealing genuine interaction.

But even for robust measures it is conceivable that, while all detected interactions are genuine, the

structure of the connectivity graph reflects rather trivial properties related to volume conduction

such as the SNR distribution.

7 Conclusion

We present an open and extendable software framework for benchmarking EEG-based brain

connectivity estimators using simulated data. Code and benchmark data are made available. We

hope that this work will help to resolve the present confusion about the reliability of commonly

used data analysis pipelines, and to establish realistic simulations as a standard way of validating

methodologies before applying them to neuroscience questions.
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